

B LANGUAGE

REFERENCE MANUAL

VERSION 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

2

B LANGUAGE

REFERENCE MANUAL

VERSION 1.8.10

Atelier B is a product developed in collaboration with Jean Raymond ABRIAL

Document created by ClearSy

This Document is the property of ClearSy and all reproduction, even partial in any form

whatsoever is strictly forbidden without written authorization

All quoted product names are trademarks registered by their respective authors

If you find mistakes or inaccuracies, please contact the maintenance service:

e-mail : maintenance.atelierb@clearsy.com

Tel. : (+33) 4.42.37.12.97

Fax : (+33) 4.42.37.12.71

ClearSy

Support Atelier B

Parc de la Duranne - 320, avenue Archimède

 Les Pléiades 3 – Bât A

 13857 Aix-en-Provence Cedex 3

FRANCE

mailto:maintenance.atelierb@clearsy.com

Contents

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

i

CONTENTS

RELEASE NOTES IV

1. INTRODUCTION 1

2. BASIC CONCEPTS 3

2.1 Lexical Conventions 5

2.2 Syntactic conventions 7

2.3 The DEFINITIONS Clause 8

2.4 Useful Syntax Rules 11

3. TYPING 12

3.1 Typing foundations 12

3.2 B Types 14

3.3 Typing abstract data 15

3.4 Types and constraints of concrete data 16

3.5 Typing of Concrete Constants 20

3.6 Typing of Concrete Variables 23

3.7 Typing operation input parameters 25

3.8 Typing machine parameters 26

3.9 Typing local variables and operation output parameters 27

4. PREDICATES 29

4.1 Propositions 30

4.2 Quantified Predicates 31

4.3 Equality Predicates 32

4.4 Belonging Predicates 33

4.5 Inclusion Predicates 34

4.6 Numbers Comparison Predicates 35

5. EXPRESSIONS 37

5.1 Primary Expressions 38

5.2 Boolean Expressions 39

5.3 Arithmetical Expressions 40

5.4 Arithmetical Expressions (continued) 43

5.5 Expressions of Couples 45

5.6 Building Sets 46

5.7 Set List Expressions 48

5.8 Set List Expressions (continued) 50

5.9 Record expressions 53

5.10 Sets of Relations 55

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

ii

5.11 Expressions of Relations 56

5.12 Expressions of Relations (continued) 59

5.13 Expressions of Relations (continued) 60

5.14 Expressions of Relations (continued) 61

5.15 Sets of Functions 63

5.16 Expressions of Functions 65

5.17 Sets of Sequences 67

5.18 Sequence Expressions 69

5.19 Sequence Expressions (continued) 71

5.20 Tree sets 73

5.21 Tree Expressions 75

5.22 Tree nodes expressions 78

Definitions 78

5.23 Binary Tree expressions 80

6. SUBSTITUTIONS 83

6.1 Block substitution 86

6.2 Identical substitution 87

6.3 Becomes Equal Substitution 88

6.4 Precondition Substitution 90

6.5 Assertion Substitution 91

6.6 Bounded choice Substitution 92

6.7 IF conditional substitution 93

6.8 Conditional Bounded choice Substitution 95

6.9 Case Conditional Substitution 96

6.10 Unbounded choice Substitution 97

6.11 Local Definition Substitution 98

6.12 Becomes Element of Substitution 99

6.13 Becomes such that Substitution 100

6.14 Local Variable Substitution 102

6.15 Sequencing Substitution 103

6.16 Operation Call Substitution 105

6.17 While Loop Substitution 107

6.18 Simultaneous Substitution 109

7. COMPONENTS 111

7.1 Abstract Machine 111

7.2 Header 113

7.3 Refinement 114

7.4 Implementation 116

7.5 The CONSTRAINTS Clause 118

Contents

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

iii

7.6 The REFINES Clause 119

7.7 The IMPORTS Clause 120

7.8 The SEES Clause 123

7.9 The INCLUDES Clause 127

7.10 The PROMOTES Clause 131

7.11 The EXTENDS Clause 133

7.12 The USES Clause 134

7.13 The SETS Clause 136

7.14 The CONCRETE_CONSTANTS Clause 138

7.15 The ABSTRACT_CONSTANTS Clause 140

7.16 The PROPERTIES Clause 142

7.17 The VALUES Clause 144

7.18 The CONCRETE_VARIABLES Clause 150

7.19 The ABSTRACT_VARIABLES Clause 152

7.20 The INVARIANT Clause 154

7.21 The ASSERTIONS Clause 158

7.22 The INITIALISATION Clause 159

7.23 The OPERATIONS Clause 162

7.24 The LOCAL_OPERATIONS Clause 169

7.25 Specificities of the B0 language 172

7.25.1 Array controls in B0 172

7.25.2 TERMS 172

7.25.3 CONDITIONS 174

7.25.4 Instructions 175

7.26 Identifier Anti-Collision Rules 177

8. B ARCHITECTURE 181

8.1 Introduction 181

8.2 B Module 181

8.3 B Project 183

8.4 Libraries 186

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

iv

RELEASE NOTES

B language Manual Reference, release 1.8.10 (release delivered with Atelier B,

release 4.3.0)

1. Add of operators real, ceiling and floor for real numbers.

B language Manual Reference, release 1.8.9 (release delivered with Atelier B,

release 4.2.0)

1. Add of real and floating types, and impact on the arithmetic expressions.

B language Manual Reference, release 1.8.7 (commercial release delivered with

Atelier B, release 4.0)

Aim: remark integration for Atelier B, release 4.0

1. Removal of closure0 definition.

2. Correction of priorities in symbols table

B language Manual Reference, release 1.8.6 (commercial release delivered with

Atelier B, release beta 3.7)

Aim: remark integration for Atelier B, release beta 3.7

1. Removal of all references to partial bijection.

B language Manual Reference, release 1.8.5 (commercial release delivered with

Atelier B, release 3.6)

Aim: remark integration for Atelier B, release 3.6

1. Precisions concerning the equivalent model of local operations

2. Restriction concerning the empty set

3. Syntax modifications of relation composition and parallel product in conformity with the

existing syntaxic analyser

4. Restriction addition for the operation call x, x c op

B language Manual Reference, release 1.8.4 (commercial release delivered with

Atelier B, beta release 3.6)

Aim: User remark integration since the last commercial release 1.8.1

1. Constraints on the literal integers: pointer in the lexical part on a syntaxic part

Contents

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

v

2. Correction to the definition of the mod operator

3. Correction of the exemple concerning the power operator

4. Correction of the typing of the rel(R) expression

5. Correction of the extension sequence definition

6. Correction of the well defineness of the operators: first, last, front, tail, q and w ;
modification of the description of the operators q and w

7. Correction of the definition of rev(S)

8. Correction of the definition of j

9. Modification of the instruction description «becomes equal to»

10. Correction of the CASE syntax and modification in the order of productions on the

substitutions

11. Correction of the well defineness of const(x,q) and infix(t)

12. Modification of the cat definition

13. Correction of the example using bin

14. The SET clause is forbidden in a definition

15. Suppression of the restriction on the machine set parameter typing. One need only indicate

that they are types and apply the typing verification rules.

16. Update of priorities of B operators given in appendix, in accordance with the priorities

defined in the Atelier B

17. Correction of the definition of conc(S)

18. Addition of the type of sizet(t)

19. Addition of grammatical productions on the tree expressions

20. Correction on the binary tree restrictions

21. Correction on the definition of empty s or p

22. Precision in the visibility tables on the non homonymous nature of data associated to a

component

23. Correction on the description of the integer division

24. Modification of the restriction on the parallel call of two operations of an included

machine: only modification operation call is forbidden

25. Precision on the trees: trees are never empty

26. Addition of % in the expression list introducing the quantified variables

27. Modification of the syntax for the expressions using several parameters.

28. Addition in the simple term of bool and access to an array element or a record element in

the arithmetic expressions

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

vi

29. Modification of the visibility table of local operations in an implementation with regard to

its abstraction

30. B operator grouping in the index under the heading ‘#’

31. The effect of deferred set type change, during the valuation in implementation, enlarges on

the PROPERTIES clause

B language Manual Reference, release 1.8.3 (Atelier B, internal release 3.6)

Aim: local operation integration for Atelier B, release 3.5

1. Typing: data typing array, operation input parameter typing and operation output parameter

typing

2. Simultaneous substitution: modification of the constraint concerning the parallel

modification of distinct variables. Restriction on the parallel calls of imported operations

3. The OPERATIONS clause: new restrictions. Now this clause contains the implementations of

local operations

4. The LOCAL_OPERATIONS clause is a new clause which specifies the local operations

5. Identifier anti-collision controls

6. Atelier B restriction : new restriction on the output parameters with regard to local

operations (FT2229)

7. Glossary: modification of operation definitions and addition of local operations

8. Visibility tables of implementation: addition of a new column for the LOCAL_OPERATIONS

clause and addition of a new line for the local operations

9. Introduction of the word LOCAL_OPERATIONS as reserved keyword

B language Manual Reference, release 1.8.2 (Atelier B, release 3.5)

Aim: corrections of errors and inaccuracies detected by the Atelier B team. Release 3.5.

1. Precision concerning the using of symbol $0 in the while loop (refer to section 5.1, Primary

Expressions, and section 6.17, While Loop Substitution)

B language Manual Reference, release 1.8.1 (commercial release delivered with

Atelier B, release 3.5)

Aim: correction of the errors detected by the Atelier B team and integration of remarks made

by the rereading committee during the meeting number 6 (30/03/98)

Contents

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

vii

1. Corrections concerning the tree integration in the B grammar (index and BNF)

2. Correction concerning the definitions: the body

3. Correction concerning the BNF

4. Corrections of literal string definitions and comments

5. Correction $0 in the loop ASSERT

6. Suppression of the syntax controls of the presence of the clauses PROPERTIES and
INVARIANT

7. Visibility modification of valuations

8. Grammar correction

9. Correction of the definition of 8

10. Modification of syntax rules

11. Addition of the rule (expression_arithmetic)

12. Suppression of unions of concrete arrays

B language Manual Reference, release 1.8 (commercial release delivered with

Atelier B, beta release 3.5)

Aim: evolution of the language supported by the Atelier B, release 3.5 : definition files and

records. Trees are not supported by Atelier B release 3.5

Introduction

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

1

1. INTRODUCTION

Preface

The B Language Reference Manual describes the B language supported by Atelier B

release 3.6. This language is based on the language presented in The B-Book, however

some progresses such as trees, recursivity or multiple refinements are not currently

supported by B language.

History

The B method is a formal method enabling the development of secure programs. It was

created by Jean-Raymond Abrial, who already during the 1980s, took part in the

creation of the Z notation. G. Laffite, F. Mejia and I. McNeal also contributed to its

progressive development. In addition, the B method is based on the scientific work

undertaken at Oxford university, in the context of the Programming Research Group

directed by C.A.R. Hoare. The B-Book by J.R. Abrial is the fundamental work that

describes the B method.

Aim

The aim of this document is to define the B language precisely, in order to produce a B

language reference manual. It is mainly intended for users who perform developments

using the B method, and also for all those who wish to discover the possibilities

provided by the B language. The language described in this document does not make up

a standard itself, however it tends to approach, as closely as possible, the future

standard.

Presenting the B method

The development of a project using the B method comprises two activities that are

closely linked: writing formal texts and proving these same texts.

The writing activity comprises writing the specifications for abstract machines using

high level mathematical formalism that is highly expressive. In this way, a B

specification comprises data (that may be expressed among other ways using integers,

Boolean values, sets, relations, functions or successions), of invariable properties that

relate to the data (expressed using logic applied to first order predicates), and finally

services that allow the initialization and later changes to the data (the transformations to

the data are expressed using substitutions). The proof activity for a B specification

comprises performing a number of demonstrations in order to prove the establishment

and conservation of invariable data properties in the specification (e.g. it is necessary to

prove that a service call retains the invariable properties). The generation of proofs to be

shown must be completely systematic. It is based especially on the transformation of

predicates using substitutions.

The development of an abstract machine continues using an extension to the write

activity during the successive refinement steps. Refining a specification comprises

reformulating it so as to providing it with more and more concrete solutions, but also to

enrich it. The proof activity relating to refinements also comprises performing a number

of static checks and demonstrations in order to prove that the refinement is a valid

reformulation of the specification. The last level of refinement of an abstract machine is

called the implementation. It is subject to some additional constraints: for example it can

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

2

only handle concrete data or substitutions. These constraints make it a programming

language that is similar to an imperative language. In this way, it may therefore be run

directly on a computer system, using either a dedicated computer or through an

intermediate step for automatic translation to Ada, safety Ada or C++.

Reading guide

Chapter 2 Conventions presents the principles that apply to the analysis of a text written

in B language: lexical analysis, syntax analysis and semantic analysis. It specifies the

lexical conventions and describes the different kinds of lexical units. Finally, it presents

the syntax conventions used in the rest of the document in order to describe B language

grammar.

Chapter 3 Typing presents the different forms of data that can be represented in B

language, then after introducing types into B, it describes how the typing of data is

expressed using typing predicates. Finally, it presents the special case of checking the

array type.

Chapter 4 Predicates presents the predicate language.

Chapter 5 Expressions presents the expression language.

Chapter 6 Substitutions presents the substitution language.

Chapter 7 Components describes the body of the B components, clause by clause, i.e.

need it be reminded, the abstract machines, the refinements and the implementations. It

also presents the identifier collision avoidance rules that apply to the components.

Chapter 8 Architecture presents the general layout of a B project. It describes the

modules, their component (the abstract machines, the refinements and the

implementations), the links that exist between the components. Finally, it presents the

libraries.

Appendix A Symbols presents the table of keywords and the table of operators with their

priorities.

Appendix B Syntax summarizes B language grammar rules.

Appendix C Visibility Tables groups the component visibility rules for a component in

relation to the components that it is linked to.

Appendix D presents the Atelier B V3.6 Restrictions relating to B language.

Appendix E is the Glossary.

 Appendix F is the Index

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

3

2. BASIC CONCEPTS

This chapter presents the general principles of the formal analysis of the B language,

along with the lexical and syntactic conventions which have been adopted in the rest of

the document.

A B project is made up of a certain number of components (see chapter 7 Components).

Each component is stored in a separate file. The analysis of a component is split into

three successive parts: lexical analysis, syntactic analysis and semantic analysis.

Lexical analysis

Lexical analysis consists in checking that the component is made up of a stream of valid

lexems, and in performing the analysis and the replacement of textual definitions (refer

to section 2.3 The Definitions Clause). On that occasion the elements of the terminal

vocabulary of B, such as identifiers, are defined.

Syntactic analysis

Syntactic analysis verifies that the stream of lexems which makes up a component

respects the grammatical production rules of B language. These rules are gathered in the

appendix B.1.

Semantic Analysis

Lastly, semantic analysis allows checks that the component has a meaning which is in

conformity with the B method. In B, semantic analysis can be divided into two phases, a

phase of static verification and a phase of proof. The phase of static verification carries

out the automatic controls described below:

 The expressions type check verifies that the data has been typed correctly and that

the expressions used within predicates, other expressions or substitutions, are of

compatible types (refer to section 3.1 Typing Foundations). These checks are

specified in the " Typing Rules" heading for each predicate, expression or

substitution.

 The scope resolution links each use of an identifier to its definition, i.e. the

declaration that defines it. Using the scope rules provided for each predicate,

expression or substitution carries out the scope resolution.

 The visibility check ensures that the use of a global data in a component clause

respects a valid access mode (read or write mode access).The access modes allowed

are specified in the visibility tables (refer to Appendix C)

 The identifier collision checks ensure there is no ambiguity when using data (see

chapter 7.26 Identifier Anti-Collision Rules).

 The semantic restrictions described in the "restrictions" headings in the Predicates,

Expressions, Substitutions and Components chapters provides the list of static

checks that are not taken into account by the checks described above.

During the proof phase, certain properties for which there is no decision procedure are

demonstrated. These properties are called Proof Obligations. They are generated

systematically from the B components that have already been proved statically. For a B

component to be declared correct, all of its Proof Obligations must have been proved by

a mathematical demonstration.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

4

In this document, the static semantic checks are described in detail, and the proofs are

mentioned but not detailed (refer to the Proof Obligations Manual).

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

5

2.1 Lexical Conventions

In B language, there are four sorts of lexical units:

 keywords and operators

 identifiers

 literal integers

 literal character strings.

The lexical analysis of a component consists in breaking down its text into a succession

of lexems from the beginning of the text, up to the end, while eliminating the

superfluous spacing characters and the comments.

The formalism used to describe the lexical units is that of the lexical analyser LEX,

which conventions are shown below:

Regular Expression String Example

x The x character b : the b letter

[x] The x character [-] : the minus sign

[xy] The x or the y character [bB] : the b letter or the B letter

[x-y] Any character in the x..y interval,
according to ASCII order

[a-z] : a lower case letter

[^x] Any character but x [^\”] : anything but a quote

x? x is optional [\-]? 0 : 0 or –0

x* 0 to n occurrences of the x
character,

[0-9]* : a positive integer, or
nothing

x+ 1 to n occurrences of the x
character

[0-9]+ : a positive integer

. Any character but a carriage return

Here is the description of each type of lexical unit as well as that of the spacing and

comment characters.

Keywords and Operators

Keywords and operators are made up of a non-empty sequence of printable characters.

Their list is provided in Appendix A. The mathematical symbols used in B Language

have their equivalent in ASCII characters. So as to make the reading of this document

easier, only the mathematical symbols will be used. The correspondence between the

two notations is given in Appendix A.

In order to simplify the syntax of the language, all the operators are given a priority rank

as well as an associativity (left or right). Thanks to these two properties, no ambiguity

can remain during the syntactic analysis of an expression, or of a predicate made up of

several operators.

Identifiers

Ident : [a-zA-Z][a-zA-Z0-9_]
*

An identifier is a sequence of letters, figures or of underline characters “_”. The first

character must be a letter. Upper and lower case letters are distinguished. An identifier

may be of any size.

The dot character "." is not permitted for identifiers. In B language, the dot separates the

different renaming prefixes of a renamed component (see chapter 8.3, Instanciation and

renaming).

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

6

Literal Integers

Litéral_integer : [\-]? [0-9]
+

Literal integers are sequences of figures, which can be preceded by a minus sign "-" so

as to designate negative integers.

Literal Real

Litéral_real : [\-]? [0-9]
+
 [.][0-9]

 +

Literal reals are numbers with an integer part and a fractional part separated by a dot.

They can be prefixed by a minus sign.

Literal character strings

Character_string : [”][.]
*
[”]

Literal character strings are sequences of characters contained inside quotation marks.

All printable ASCII characters are accepted except for the quotation marks "" "" which

are used to identify the literal character strings, and the new line character.

Comments

Comments are bounded by the start-of-comment lexem “/*” and the end-of-comment

lexem “*/”. The contents of a comment are made of a set of 0 to N printable ASCII

characters, with the exception of the two consecutive characters “*/” those build the

end-of-comment lexem. In this way, comments can not be nested.

Spacing characters

Spacing characters are the space character ' ', the horizontal and vertical tab characters

(HT and VT), the new line characters (CR and FF). The spacing characters are used to

separate the lexems. When several spacing characters are used in succession, they are

considered like a single space. Spacing characters are necessary to separate a keyword

from an identifier. They allow the user complete freedom in choosing the page layout of

its B source text.

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

7

2.2 Syntactic conventions

The formalism retained for representing the B language syntax is a variation of the BNF

and EBNF formalisms, of which the conventions are as follows:

 keywords and operators are represented between quotation marks.

 the other elements of the terminal vocabulary (identifiers, literal integers and literal

character strings) are shown in a normal font (neither in italics nor in bold type).

 The non-terminal elements of vocabulary are shown in italics.

 a ::= b represents a grammar production. a is a member of the non-terminal

vocabulary, and b is a sequence of concatenated vocabulary items.

 (a) represents the a item

 a | b represents the a item or the b item

 [a] represents the optional a item

 a* represents n concatenated instances of a, where n > 0

 a
+
 represents n concatenated instances of a, where n > 1

 a
*b

 represents n concatenated instances of a, separated by b, where n > 0

 a
+b

 represents n concatenated instances of a, separated by b, where n > 1

Attention

The characters "()[]|+* are part of the meta-language of grammar description. They must

not be mistaken for operators of B language. The latter are represented between

quotation marks, like other keywords and operators of B language.

Example

Clause_abstract_variables ::= “ABSTRACT_VARIABLES” Ident_ren
+”,”

This grammar production can be used to write the following text:

ABSTRACT_VARIABLES Var1, instB1.instC2.Var2, instD3.abstr_var

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

8

2.3 The DEFINITIONS Clause

Syntax

The syntactic description of the DEFINITIONS clause uses the BNF notation described in

section 2.2 Syntactic conventions, and not the LEX notation given previously.

Definitions_clause ::= “DEFINITIONS” Definition
+”;”

Definition ::= Ident [“(“ Ident
+”,”

 “)”] “==” Lexem
*

 | “<” Filename “>”

 | “” ” Filename “” ”

Definition_call ::= Ident [“(“(Lexem+)+
”,”

 “)”]

The terminal Lexem refers to any lexem among the following lexical units: keywords

and operators, identifiers, literal integers and literal character strings (refer to section 2.1

Lexical Conventions).

The terminal Filename refers to the name of a file, which can include a relative or

absolute path, according to the rules of the operating system with which Atelier B is

being used.

Description

The definition clause contains definition files to be included and explicit declarations of

textual definitions of a component. The explicit definitions may have parameters. The

definition calls located within the text of the component are replaced during the lexical

analysis phase, before the syntax analysis. This is the reason why we are presenting the

Definitions clause in this chapter. The scope of a definition located in a component is

the whole of the component, including the text situated before the declaration of the

definition.

Restrictions

1. The various definitions of a component must all have different names.

2. A definition must not use the keywords reserved for the header of a component, or clause

names. These are the following keywords: MACHINE, REFINEMENT, IMPLEMENTATION,

REFINES, DEFINITIONS, IMPORTS, SEES, INCLUDES, USES, EXTENDS, PROMOTES, SETS,

ABSTRACT_CONSTANTS, CONCRETE_CONSTANTS, CONSTANTS, VALUES,

ABSTRACT_VARIABLES, VARIABLES, CONCRETE_VARIABLES, INVARIANT, ASSERTIONS,

INITIALISATION, OPERATIONS.

3. The optional formal parameters of a definition must all have different names.

4. The operator "==" is illegal on the right hand side of a definition, i.e. in the part located

after the "==" operator.

5. The definitions may be dependent on other definitions, provided that there is no cyclic

references in their dependencies.

6. When a definition call is made, i.e. when an identifier has the name of a definition outside

the definition left part, the name of the definition must be followed by as many effective

parameters as there are formal parameters.

7. In the case of the inclusion of a definition file between quotation marks, the name used

must designate a file from the current directory, containing the B source file.

8. In the case of the inclusion of a definition file between chevrons (the characters "<" and

">"), the name used must designate a file located in one of the included definitions files

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

9

directory.

9. A definitions file must only contain, without taking the commentaries into account, a

DEFINITIONS clause respecting the rules described in this paragraph.

10. A definitions file can include other definition files, but these inclusions must not lead to

cycles.

USE

A definition is either a reference to a definitions file, or an explicit textual definition.

The definitions contained in the definition files are included in the list of definitions of a

component as if they were explicit definitions. This allows the sharing of definitions

between several components. Indeed, these components need only to include the same

definition clause.

If the name of a definition file is between inverted quotation mark, the file is sought

from the local directory, where the component being analysed can be found. If the name

of a definition file is between chevrons, the file is looked up in order, from each

definition directory. This ordered list of directories is supplied by the user of Atelier B.

The name of a definition is an identifier. A definition has parameters if its name is

followed by a list of identifiers, which are its formal parameters. The part of a definition

located after the "==" operator forms the replacement text for the definition. It is called

the definitions body.

The body of a definition is finished when one of the following elements is found: the

name of a clause (the list of which is given in Restriction 2), the end of a component,

that is to say the word END or a ';' character followed by another definition.

EXAMPLES

The body of the Composition definition is “f ; g”. The last “;” separates this definition

from the next one. The body of the AffectSeq definition is “x := 2  v + 1”. The last “;”

is part of AffectSeq since the DEFINITIONS clause ends as the reserved keyword

CONCRETE_CONSTANT is found.

...
DEFINITIONS

 Composition (f, g) == f ; g ;

 AffectSeq (x, v) == x := 2  v + 1 ;
CONCRETE_CONSTANTS

...

 Var1 := VAL_INIT ;

 Var2 := Var1 + 1

 END ;

...

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

10

The list of definitions of the component MA is made up of the explicit definitions begin

and end as well as the definitions of files common1.def and common2.def. The

common1.def file is looked up from the local directory, whereas the common2.def is

looked up from the definitions files inclusion directories.

Definition call

A definition call consists of using the definition name, and providing as many effective

parameters as the definition has formal parameters.

Once the definition call has been expanded, the usual syntactic rules of component

apply.

VISIBILITY

The definitions of a component are local to that component. They are not therefore

accessible by the components that are dependent on it. So as to share the definitions,

they can be stored in a definition file and be included several times in this file.

EXAMPLES

Brackets around formal parameters x1 and x2 in the Sum definition ensure that the sum

of x1 and x2 will always be performed, even if this definition is called from inside and

expression containing operators with a higher priority than ‘+’.

...
DEFINITIONS

 INIT_VAL == -1 ;

 Sum (x1, x2) == ((x1) + (x2)) ;

 INIT_BLOC ==
 BEGIN
 Var1 := INIT_VAL ;

 Var2 := Var1 + 1

 END ;
CONCRETE_CONSTANTS

...

MACHINE

 MA
DEFINITIONS

 "common1.def" ;

 <common2.def> ;

 begin == -2 * UNIT ;

 end == 10 * UNIT
SEES

...
END

DEFINITIONS

 UNIT == 16
DEFINITIONS

 T == TRUE ;

 F == FALSE

common1.def

common2.def

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

11

2.4 Useful Syntax Rules

The following syntax rules are used in the rest of this document in order to simplify the

B language syntax.

Syntax

List_Ident ::= Ident

 | “(” Ident
+“,”

 “)”

Ren_ident ::= Ident
+“,”

RESTRICTIONS

1. When there is a list of identifiers containing several elements, each identifier must

be different.

2. When a renamed identifier is made up of several identifiers, the latter must only be

separated by the characters'.', spaces and commentaries are prohibited.

DESCRIPTION

The non-terminal List_ident represents a list from 1 to n identifiers. If the list contains

several identifiers, then it must be placed between brackets. Such a list is used to declare

data within predicates  or  or expressions , , U, I or { | }.

The non-terminal Ren_Ident represents an identifier which may have been renamed. A

renamed identifier has a prefix made up of 1 to n identifiers separated by the dot

character. Renamed identifiers designate data from renamed machines (see chapter 5.1

Primary Expressions).

EXAMPLES

(x, y, z) is the list of the three pieces of data: x, y, z.

new.var refers to the data var from a renamed machine with the prefix new.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

12

3. TYPING

3.1 Typing foundations

The typing in B is a static checking mechanism of B language data and expressions. The

type check of a B component must be done before its proof.

The concept of B type is based on the concept of a set, and the monotony property of

inclusion. Let E be an expression, and S and T be sets such that S (T. If E : S then

E : T. The largest set in which E is contained is called the type of E.

In B language, typing is present in three forms: built-in B language types, data typing

and type checking.

B language types

The possible types in B language are the basic types and the types built from these using

the Cartesian product, the power-set (the set of subsets) and the set of records. This

mechanism is described in detail in 3.2.

Data typing

In B language, any data item used in a predicate or in a substitution and that has not yet

been assigned a type must be typed. This typing is performed when the data is used for

the first time, by scanning the text of the predicate or the substitution from where it

starts. Typing is performed using specific predicates or substitutions called typing

predicates and typing substitutions, and using a type inference mechanism. The data

type is deduced from the predicate or the substitution and from the type of the other data

involved. The following sections present the typing predicates that depend on the type of

data and the typing substitutions made.

The table below presents for each type of B language data, the clause where it is typed

and how it is typed.

Type of data Typing clause Typing method

scalar machine parameter

(identifier in lowercase)

CONSTRAINTS clause Typing predicate

Set machine parameter

(identifier without lowercase)

 Forms a basic type

Deferred or enumerated set SETS clause Forms a basic type

Element from an enumerated set SETS clause Implicitly typed by the

enumerated set

Concrete constant PROPERTIES clause Typing predicate for concrete

constants

Abstract constant PROPERTIES clause Typing predicate for abstract

data

Concrete variable INVARIANT clause Typing predicate for concrete

variable

Abstract variable INVARIANT clause Typing predicate for abstract

data

Operation input parameter OPERATIONS clause of

abstract machine, in a

precondition

Typing predicate for operation

input parameter

Operation output parameter OPERATIONS clause of

abstract machine

Typing substitution

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

13

Local operation input parameter LOCAL_OPERATIONS clause,

in a precondition

Typing predicate for operation

input parameter

Local operation output parameter LOCAL_OPERATIONS clause Typing substitution

Predicate variable  or , for

expression , , U or I, or ANY or

LET substitute

Any clause that uses a

predicate, an expression or

a substitute

Typing the predicate for

abstract data

Local variable (VAR substitute) INITIALISATION or

OPERATIONS clause

Typing a substitution

Type checking

Finally, when using data that is already typed in expressions, predicates or substitutions,

the typing rules for these expressions, predicates or substitutions must be checked.

These rules are provided in the description of each predicate, expression or substitution,

in chapters 4, 5 and 6.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

14

3.2 B Types

Syntax

Type ::= Basic_type

 | “P” “(“ Type “)”

 | Type x Type

 | “struct” “(“ (Ident “:” Type)
+”,”

 “)”

 | “(“ Type “)”

Basic_type ::= “Z”

 | "ℝ"
 | "FLOAT"

 | “BOOL”

 | “STRING”

 | Ident

Description

A B type is either a basic type, or a type built on a type constructor.

The basic types are:

 the set of relative integers Z,

 the set of real numbers ℝ,

 the set of floating numbers FLOAT,

 the set of Boolean BOOL, defined as BOOL = {FALSE, TRUE}, with TRUE d FALSE

 the set of character strings STRING,

 the deferred sets and enumerated sets introduced in the SETS clause, as well as

machine set formal parameters which are considered as deferred sets.

There are three type constructors: the power-set 'P', the Cartesian product '*' and the

collection of records labelled 'struct'. Let T, T1, T2, T3, T4 be types:

 P(T) designates the power-set or the set of subsets of T, i.e. the set the elements of

which are sets of elements of T,

 T1* T2 designates the Cartesian product of the sets T1 and T2, i.e. the set of ordered

pairs, the first element of which is of the type T1 and the second is of the type T2.

Since the operator '*' is associative to the right, the type T1 * T2 * T3 * T4

designates the type ((T1 * T2) * T3) * T4.

 Let n be an integer greater or equal than 1, T1, ..., Tn, be types and Ident1 ... Identn be

identifiers distinct two by two. Then the record type struct(Ident1:T1, ..., Identn:Tn)

designates the set formed by an ordered collection of n types called record fields.

Each field has a name Ident called label. These record type labels must be distinct

two by two.

EXAMPLES

The type of expression 3 is Z

The type of expression { -5, 3, -1, 8 } is P(Z)

The type of expression (0..10) * BOOL 3 ABS1 is P(P(Z*BOOL*ABS1))

The type of expression rec(a : 5, b : TRUE) is struct(a : Z, b : BOOL)

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

15

3.3 Typing abstract data

Syntax

Typing_abstract_data ::=

 Ident "" Expression
+"×"

 | Ident "" Expression

 | Ident "" Expression
 | Ident

+", "
 "=" Expression

+", "

Description

The term abstract data applies to an abstract constant, an abstract variable or data

introduced by an ANY, LET substitution or by a predicate ! or , or , , , {|}, 

expression (refer to section 3.1 Typing foundations).

The typing predicates for abstract data are specific elementary predicates. Each typing

predicate is used to set the type of one or more abstract data elements. It is separated

from the preceding and successive predicates by a conjunction.

The elementary typing predicates are belonging, inclusion and equals. The abstract data

to type must be in the left hand part of the belonging, inclusion or equals operator. The

right hand part is made up of an expression where all of the components are accessible

and previously typed (refer to Typing Order, below). The type of the abstract data in the

left part is then determined by applying the typing rules for the used predicate.

Typing order

The data typing mechanism used within a predicate consists of scanning the entire text

of the predicate from start to finish. When a not yet typed data element appears in the

left hand side of a typing predicate, the data element is typed and remains so in the rest

of the text of the predicate.

Examples

VarRaf1  INT 

VarRaf2  NAT 

VarRaf3 = TRUE 

VarRaf4  (0 .. 5)  (0 .. 10) 

VarRaf5  Z 

VarRaf6  NAT 

VarRaf7  NAT1  (-5 .. -1) 

VarRaf8 = (0 .. 4) × {FALSE}

As the type of INT is P(Z) and VarRaf1 is typed using the operator ’’, the type of VarRaf1

is Z.

As the type of NAT is P(Z) and VarRaf2 is typed using the operator ’’, the type of VarRaf2

is P(Z).

As the type of TRUE is BOOL and VarRaf3 is typed using the operator ’=’, the type of

VarRaf3 is BOOL.

In the same way, the type of VarRaf4 is P(Z × Z), the type of VarRaf5 is Z, the type of

VarRaf6 is P(Z), the type of VarRaf7 is P(Z), the type of VarRaf8 is P(Z × BOOL).

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

16

3.4 Types and constraints of concrete data

The concrete data of a B module are data which will be part of the program associated to

a module (see section 8.2 B Module). Since concrete data must be able to be

implemented by a program, a number of constraints have been fixed so as to

differentiate concrete data from data which is not concrete. These constraints are

necessarily arbitrary, but they have been established by considering what programming

languages such as Ada or C++ can easily implement, and by trying to give as much

flexibility as possible to B Language users. In this way, integers, booleans or arrays will

be able to be implemented (perhaps with certain constraints), but not the data which

value is {-1, 5, 8} because it is not directly and simply implementable in classical

programming languages.

The most important of these constraints is the type of data. For example, a piece of data

of type P(Z * P(Z)) which represents a set of couples the first elements of which are

integers, and the second elements are sets of integers is not retained as being concrete

because it is too far from what a programming language can implement directly.

There are other constraints than the type. For example, the only concrete data integers

are those which are contained between the smallest implementable integer and the

largest implementable integer for a given target machine.

Finally, the constraints concerning concrete data depend on the nature of the data. For

example, concrete constants can be intervals of integers - but the concrete variables can

not. We are first going to describe all the possible categories of concrete data. Then we

will present a table giving the authorised categories for each kind of concrete data.

DEFERRED OR ENUMERATED SETS

TYPE

A deferred or enumerated set Set is of type P(Set)

CONSTRAINTS

There is no constraint for deferred and enumerated sets.

INTEGERS

TYPE

Concrete integers are of the Z type.

CONSTRAINTS

Concrete integers must belong to the INT interval whose inferior and superior bounds

are the predefined constants MININT and MAXINT. The value of these constants can be

parameterized; it depends on the target machine, on which the program associated to a B

project will have to work. These values must be placed in a way that any integer

comprised between MININT and MAXINT can be directly represented without raising a

data overflow on the target machine.

Floating numbers

Type

Floating numbers are of the FLOAT type.

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

17

Constraints

There is no constraint.

Booleans

Type

Booleans are of the BOOL type.

Constraints

There is no constraint.

Elements of abstract or enumerated sets

Type

The elements belonging to a deferred or enumerated set Set are of the type Set

Constraints

There is no constraint.

Sub-sets of integers or elements of deferred sets.

TYPE

Concrete sub-sets of integers are of type P(Z). Concrete sub-sets of elements of a

deferred set Set are of type P(Set)

Constraints

Concrete sub-sets of integers must be concrete intervals of integers. Concrete sub-sets of

elements of a deferred set must be intervals of concrete integers, when the deferred set is

valued by an interval of integers (see section 7.17 The VALUES Clause).

ARRAYS

TYPE

Concrete arrays are of the type P(T1 * ... * Tn), where n > 1 and each Ti type is a base

type other than the STRING type.

Constraints

Before defining the notion of a concrete array, we introduce the notion of simple

concrete set. A simple concrete set is a deferred or enumerated set, the boolean values

set or an interval of concrete integers or a concrete sub-set of a deferred set.

A concrete array is a total function, of which the original set is the Cartesian product of

n simple concrete sets (where n > 1) and the final set of which is a simple concrete set.

The n-1 simple sets which make up the domain of definition of the array are also called

the index sets of the array.

EXAMPLES
Tab1 : (0..4) 3 INT &

Tab2 : AbstractSet1 * EnumeratedSet1 * BOOL 7 BOOL &

Tab3 : (-1 .. 1) * IntervalCst1 5 (0..100) &

Tab4 : EnumeratedSet1 9 NAT &

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

18

Tab5 : (0..8) 3 INT

The concrete array Tab1 is a total function of the interval (0..4) in the INT set. The

concrete array Tab2 is a total surjection of the Cartesian product of the simple sets

AbstractSet1, EnumeratedSet1 and BOOL towards the BOOL set.

RECORDS

TYPE

The type of concrete records is defined by induction. A concrete record type is a record

type in which field is of one of the following types : Z, BOOL, a deferred set, an

enumerated set, a concrete array type or a concrete record type.

CONSTRAINTS

The constraints on concrete record data are defined by induction. Each field of a

concrete record must be a piece of concrete data. More precisely, if one of the fields of a

concrete record is itself a record, then each field of the latter must in its turn be a piece

of concrete data.

EXAMPLE
Year : struct(Year_number : INT,

 Leap_year : BOOL,

 Number_of_days : (1..12) 3 (28..31),

 Weather : struct(Average_Temperature : (1..12) 3INT,

 Average_Rain : (1..12) 3 INT))

The concrete record Year contains four fields : the Year_number field is a concrete

integer, the Leap_year field is a Boolean, the Number_of_days field is a concrete array

and the Weather field is a concrete record which has got two concrete array fields,

Average_Temperature and Average_Rain.

CHARACTER STRINGS

TYPE

Character strings are of the STRING type.

CONSTRAINTS

There is no constraint.

Quick reference table

The following table sums up for each piece of concrete data which are the authorised

types of concrete data.

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

19

Concrete type

Nature

Deferred or
enumerate
d set

Integer Boolean Item belonging to
a deffered of
enumerated set

Interval of integers
or sub-set of a
deferred set

Array Record Character
string

Machine set
formal parameter

* *

Enumerated or
deferred set

*

Machine scalar
formal parameter

 * * *

Literal enumerated
value

 *

Concrete constant * * * * * *

Concrete variable * * * * *

Operation input
parameter (local or
non local)

 * * * * * *

Operation output
parameter (local or
non local)

 * * * * *

Local variable * * * * *

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

20

3.5 Typing of Concrete Constants

Syntax

Concrete_constant_typing ::=

 Ident+”,” “:” Typing_belongs_to_concrete_data +”*”

 | Ident “=” Typing_equals_concrete_constant

 | Ident “(” Simple_set

 | Ident “è” Simple_set

Typing_belongs_to_concrete_data ::=

 Simple_set

 | Simple_set
+”x”

 “3” Simple_set

 | Simple_set
+”x”

 “5” Simple_set

 | Simple_set
+”x”

 “7” Simple_set

 | Simple_set
+”x”

 “9” Simple_set

 | “{“ Simple_term
+”,”

 “}”

 | “struct” “(“ (Ident “:” Typing_belongs_to_concrete_data)
+”,”

 “)”

Typing_equals_concrete_constant ::=

 Term

 | Array_expr

 | B0_interval

 | B0_Number_set

 | “rec” “(“ ([Ident “:”] (Term | Array_expr))
+”,”

 “)”

Simple_set ::=

 B0_simple_set

 | “BOOL”

| ‘FLOAT”

 | B0_interval

 | Ident

B0_Simple_set ::=

 “NAT”

 | “NAT1”

 | “INT”

Array_expr ::=

 Ident

 | “{“ (Simple_term
+”m”

 “m” Term)
+”,”

 “}”

 | Simple_set
+”*”

 “*” “{“ Term “}”

B0_interval ::=

 Arithmetic_expression “..” Arithmetic_expression

 | B0_Number_set

Description

Concrete constants are typed with the help of typing predicates used in the

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

21

PROPERTIES clauses. The typing predicates of concrete constants follow the same

principles as the typing predicates of abstract data (refer to section 3.4 Types and

constraints of concrete data.), while having additional constraints: the right hand side of

the predicate must type each constant with a concrete constant type (see 3.4, Types and

constraints of concrete data). Only the elementary expressions whose syntax is given

below are authorised. They are:

 belonging to a simple set, which is a scalar set.

Example:

Cst1 : INT &

Cst2 : BOOL &

Cst3 : 0..5 &

Cst4 : IntervalCst1 &

Cst5 : AbstractSet1 &

Cst6 : EnumeratedSet1

These typing predicates can also be written as follows:

Cst1, Cst2, Cst3, Cst4, Cst5, Cst6 : INT * BOOL * (0..5) * IntervalCst1 * AbstractSet1 *

EnumeratedSet1

 belonging to a set of total functions. The index sets and arrival set of the function

must be simple sets.

Example:

Arr1 : (0..4) 3 INT &

Arr2 : AbstractSet1 * EnumeratedSet1 * BOOL 5 BOOL &

Arr3 : (-1 .. 1) * IntervalCst1 5 (0..100) &

Arr4 : EnumeratedSet1 9 NAT

 belonging to a scalar set defined in extension.

Example:

Cst7 : { 0, 3, 7, -8 } &

Cst8 : { bleu, white, red }

 equality with an identifier which refers to a scalar data.

Example:

Cst10 = red &

Cst11 = Cst10

 equality with an arithmetic or Boolean expression.

Example:

Cst12 = IntCst1 + 2 * (IntCst2 – 1) &

Cst13 = 0 &

Cst14 = FALSE &

Cst15 = bool(Cst12 < 10 \/ Cst12 > 20)

 equality with an array expression

Example:

Arr5 = (0..4) * { 0 } &

Arr6 = (0..2) * { TRUE }

 inclusion in a simple set.

Example:

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

22

IntervCst16 <: INT &

IntervCst17 (AbstractSet1 &

IntervCst18 (-100 .. 100 &

IntervCst19 è IntervCst16

 belonging to a record set.

Example:

RecCst : struct(masc : BOOL, age : 0.255)

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

23

3.6 Typing of Concrete Variables

Syntax

Concrete_variable_typing ::=

 Ident
+”,”

 “:” Typing_belongs_to_concrete_data
+”x”

 | Ident “=” Term

Typing_belongs_to_concrete_data ::=

 Simple_set

 | Simple_set
+”*”

 “3” Simple_set

 | Simple_set
+”*”

 “5” Simple_set

 | Simple_set
+”*”

 “7” Simple_set

 | Simple_set
+”*”

 “9” Simple_set

 | “{“ Simple_term
+”,”

 “}”

 | “struct” “(“ (Ident “:” Typing_belongs_to_concrete_data)
+”,”

 “)”

Description

Concrete variables are typed with the help of typing predicates used in the INVARIANT

clause. The typing predicates of concrete variables follow the same principles as the

typing predicates of abstract data (refer to section 3.4 Types and constraints of concrete

data), while having additional constraints: only the “belongs to” and “is equal to”

predicates are allowed to type concrete variables. Inclusion is forbidden because a

concrete variable cannot be a set. Moreover, the right hand side of the predicate must

type the variable with a concrete variable type (see section 3.4 Types and constraints of

concrete data). Only the elementary expressions whose syntax is given below are

authorised. They are:

 belonging to a simple set (which is a set of scalars)

Example:

Var1 : INT &

Var2 : BOOL &

Var3 : 0..5 &

Var4 : IntervalCst1 &

Var5 : AbstractSet1 &

Var6 : EnumeratedSet1

These typing predicates can also be written as follows :

Var1, Var2, Var3, Var4, Var5, Var6 : INT * BOOL * (0..5) * IntervCst1 * AbstractSet1 *

EnumeratedSet1

 belonging of a set of total functions. The index and arrival sets of the function must

be simple sets.

 Example:

Arr1 : (0..4) 3 INT &

Arr2 : AbstractSet1 * EnumeratedSet1 * BOOL 5 BOOL &

Arr3 : (-1 .. 1) * IntervalCst1 5 (0..100)

Arr4 : EnumeratedSet1 9 NAT

 belonging to an extensive set of scalars.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

24

Example:

Var7 : { 0, 3, 7, -8 } &

Var8 : { blue, white, red }

 equality with an identifier which refers to a scalar data.

Example:

Var10 = red &

Var11 = Var10

 equality with an arithmetic or Boolean expression.

Example:

Var12 = IntervalCst1 + 2 * (IntervalCst2 – 1) &

Var13 = 0 &

Var14 = FALSE &

Var15 = bool(Var12 < 10 \/ Var12 > 20)

 belonging to a set of records.

Example:

Var16 : struct(value : INT, status : BOOL)

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

25

3.7 Typing operation input parameters

Syntax
Operation_input_parameter_typing ::=

 Ident
+”,”

 “:” Typing_belongs_to_concrete_data
+”x”

 | Ident “=” Term

Typing_belongs_to_input_parameter ::=

 Simple_set

 | Simple_set
+”x”

 “3” Simple_set

 | Simple_set
+”x”

 “5” Simple_set

 | Simple_set
+”x”

 “7” Simple_set

 | Simple_set
+”x”

 “9” Simple_set

 | “{“ Simple_term
+”,”

 “}”

 | “struct” “(“ (Ident “:” Typing_belongs_to_concrete_data)
+”,”

 “)”

 | “STRING”

Description

Operation input parameters are typed inside typing predicates used in a precondition

(see section 7.23 The OPERATIONS Clause).

There are two different ways of typing operation input parameters, distinguished by the

operation belongs to a module which has an associated source code (developed or base

module), or if it belongs to an abstract module (see section 8.2 B Module).

In the first case, operation input parameters typing predicates follow the same principles

as concrete variables typing predicates, while adding another possibility, which is

belonging to the set of character strings, STRING. An operation input parameter can

therefore be a string of characters.

Example:

Var 17 : STRING

If the operation belongs to an abstract module, the operation input parameters are

abstract data (see section 3.3 Typing abstract data). Indeed, since an abstract module

does not have an associated code, its operation can not be called from an

implementation. It is therefore not necessary for its input parameters to be concrete.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

26

3.8 Typing machine parameters

Syntax

Typing_machine_parameter ::=

 Ident
+”,”

 “:” Typing_belongs_to_machine_parameter
+”,”

 | Ident
+”,”

 “=” Term
+”,”

Typing_belongs_to_machine_parameter ::=

 Number_set

 | “BOOL”

 | Interval

 | Ident

Number_set ::=

 “Z”

 | “N”

 | “N1”

 | “NAT”

 | “NAT1”

 | “INT”

Description

The scalar parameters of an abstract machine are typed with typing predicates in the

section 7.5 The CONSTRAINTS Clause. The typing predicates of the scalar parameters of a

machine follow the same principles as the typing predicates of abstract data.(refer

section 3.3 Typing of abstract data), to which they add a certain number of restrictions.

The only allowed types to explicitly type the scalar parameters of a machine are Z,

BOOL and the set parameters of the abstract machine. The set parameters are exactly the

parameters represented by the identifiers without any lower case letter.

The formal scalar parameters that have already been typed in a typing predicate can be

used to type another formal scalar parameter.

Typing

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

27

3.9 Typing local variables and operation output parameters

Description

The local variables declared in a VAR substitution and operation formal output

parameters (local or non local) are typed with typing substitutions (see chapter 6

Substitutions). Typing substitutions are the following substitutions: “becomes equal to”

(see section 6.3), “becomes a member of” (see section 6.12), “become such that” (see

section 6.13) and “operation call” (see section 6.16).

As far as operation output parameters are concerned, two cases can be distinguished,

according to whether the operation belongs to a module with an associated code

(developed module or base module) or to an abstract module (see section 8.2 B Module).

In the case of an operation of an abstract module, the operation output parameters are

abstract data. Indeed, since an abstract module does not have an associated code, these

operations cannot be called by an implantation, and so it is not necessary for the

operation output parameters to be concrete.

The output parameters of modules with associated code, as well as implantation local

variables must be concrete data. Given a piece of data v1 designating a local variable or

an untyped operation output parameter (refer to section 2.3 Order of typing). Here is

how v1 can be typed with the help of the different typing substitutions.

Substitution “becomes equal to”

Given an expression E of type T, then the “becomes equal to” substitution: v1 := E,

gives v1 the type of T. In order that E may be used to type v1, it is necessary that v1 does

not appear in E. It is also possible to type v1 in a “becomes equal to” substitution in

parallel with other data.

Example:
 v1 :=TRUE the type of v1 is BOOL

 v1, v2 := 0,0 the types of v1 and v2 are Z

Substitution “becomes a member of”

Given an expression E of type P(T), then the “becomes a member of” substitution

v1 :: E gives v1 the type of T.

Example:
 v1 :: AbsSet the type of v1 is AbsSet

Substitution “becomes such that”

Given a predicate P and considering the “becomes such that” substitution: v1 : (P), P

must type the data v1 with an abstract data typing predicate, according to the principles

described in section 3.3

Example:
 v1 : (v1 : INT & v1 < 10) the type of v1 is Z

Substitution “operation call”

Finally, v1 can be typed as an operation effective output parameter (during an operation

call). The type of v1 is then given by the type of the operation (local or non local) formal

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

28

output parameter.

Example:
 v1 c op1 the type of v1 is the type of the output parameter of op1

Prédicats

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

29

4. PREDICATES

A predicate is a formula that can be proved or disproved or that may be part of the

assumptions used to determine proof.

Predicates are used in B language to:

• express the properties of data (within the CONSTRAINTS, PROPERTIES, INVARIANT,

ASSERTIONS clauses of the predicates ! or , expressions , { | }, , ,  or  and

“becomes such that” substitutions ANY, LET, ASSERT or WHILE),

• express conditions when applying substitutions (SELECT, IF, WHILE substitutions).

The syntax of predicates is given below:

Predicate ::=
 Bracketed_predicate Propositions
 | Conjunction_predicate
 | Negation_predicate
 | Disjunction_predicate
 | Implication_predicate
 | Equivalence_predicate
 | Universal_predicate Qualified predicates
 | Existential_predicate
 | Equals_predicate Equality predicates
 | Predicate_inequality
 | Belongs_predicate Belonging predicates
 | Non_belongs_predicate
 | Inclusion_predicate Inclusion predicates
 | Inclusion_predicate_strict
 | Non_inclusion_predicate
 | Non_inclusion_predicate_strict
 | Less_than_or_equal_predicate Integer comparison predicates
 | Strictly_less_than_predicate
 | Predicate_greater_than_or_equal
 | Strictly_greater_predicate_than

The following sections describe the predicates grouped in families. For a family of

predicates, the predicate operator is given, its syntax in mathematical notation, its type

assignment or typing rules and the range of data declared, its description, the applicable

laws or mathematical properties and examples.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

30

4.1 Propositions

Operator

 () Brackets

 Conjunction

¬ Negation

 Disjunction

 Implication

 Equivalence

Syntax

Bracketed_predicate ::= "(" Predicate ")"

Conjunction_predicate ::= Predicate "" Predicate

Negation_predicate ::= "¬" "(" Predicate ")"

Disjunction_predicate ::= Predicate "" Predicate

Implication_predicate ::= Predicate "" Predicate

Equivalence_predicate ::= Predicate "" Predicate

Definition

P  Q  ¬ P  Q

P  Q  (P  Q)  (Q  P)

Description

The operators presented allow the construction of complex predicates from simpler

predicates. Below, for each complex predicate, is defined exactly when the predicate is

true:

Let P and Q be predicates,

• (P) is true if and only if P is true. This construction allows placing predicates in

brackets, which may become necessary depending on the priority level of the

operators used.

For example, the P  Q  R predicate will be analyzed as (P  Q)  R and not as

P  (Q  R), as the ’’ operator has a higher priority than the ’’ operator. To

express the P  (Q  R) predicate, brackets are therefore an absolute necessity.

• P  Q is true if and only if P and Q are true,

• ¬(P) is true if and only if P is not true,

• P  Q is true if and only if P or Q is true,

• P  Q is true if and only if Q is true or P is not true,

• P  Q is true if and only if P  Q and Q  P are true.

Prédicats

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

31

4.2 Quantified Predicates

Operator

 Universal quantifier

 Existential quantifier

Syntax

Universal_predicate::= "" List_ident "." "(" Predicate "" Predicate ")"

Existential_predicate ::= "" List_ident "." "(" Predicate ")"

Definition

 X . (P)  ¬ ( X . (¬ (P)))

Scope

Predicates  X . (P) and  X . (P) introduce a list of data X, the scope of which is

predicate P.

Restrictions

 The variables introduced by universal predicates, format  X . (P  Q) must be

typed by an abstract data typing predicate (refer to 3.1 Typing foundations), taken

from a list of conjunctions at the highest level of syntax analysis in P.

 The variables introduced by an existence predicate, format  X . (P) must be typed

by an abstract data typing predicate (refer to 3.1 Typing foundations), taken from

a list of conjunctions at the highest level of syntax analysis in P.

Description

Let X be a list of identifiers that are distinct when taken two by two and P and Q

predicates.

• The  X . (P  Q) predicate is true if predicate P  Q is true regardless of the

values of X.

• The  X . (P) predicate is true if a non empty value set exists for X where

predicate P is true.

Examples

Let A be the set of integers: A = { 0, 1, 2 }.

Predicate  x . (x  A  x  2) is true as any element of A is less than or equal to 2.

Predicate  x . (x  A  x = 2) is true as an element of A exists that is equal to 2.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

32

4.3 Equality Predicates

Operator

= Equal to

 Unequal to

Syntax

Equals_predicate ::= Expression "=" Expression

Predicate_unequal ::= Expression "" Expression

Typing rule

In the x = y and x  y predicates, the expressions x and y must have the same type.

Definition

x  y  ¬ (x = y)

Description

• Predicate x = y is true if the expressions x and y have the same value.

• Predicate x  y is true if the expressions x and y, although of the same type, do not

have the same value.

Prédicats

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

33

4.4 Belonging Predicates

Operator

 Belonging

 Non belonging

Syntax

Belongs_predicate ::= Expression "" Expression

Non_belongs_predicate ::= Expression "" Expression

Typing rule

In predicates x  E and x  E, if the type of expression x is T then the type for E must be

P(T).

Definition

x  E  ¬(x  E)

Description

Let x and E be expressions.

• Predicate x  E is true if the value of expression x belongs to set E.

• Predicate x   is true if the value of expression x does not belong to set E.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

34

4.5 Inclusion Predicates

Operator

 Inclusion

 Strict inclusion

 Non inclusion

 Strict non inclusion

Syntax

Inclusion_predicate ::= Expression "" Expression

Strict_inclusion_predicate ::= Expression "" Expression

Non_inclusion_predicate ::= Expression "" Expression

Predicate_strict_non_inclusion ::= Expression "" Expression

Definition

s  T  s  P(T)

s  T  s  T  s  T

s  T  ¬(T  P(T))

s  T  ¬(s  T  s  T)

Typing rule

In predicates X  Y, X  Y, X  Y, X  Y, expressions X and Y must have the same type, and

their type must match P(T).

Description

Let X and Y be expressions representing sets.

• X  Y is true if any element of X belongs to Y.

• X  Y is true if any element of X belongs to Y and if X and Y are different.

• X  Y is true if an element of X exists that does not belong to Y.

• X  Y is true if X is equal to Y or if an element of X exists that does not belong to Y.

Prédicats

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

35

4.6 Numbers Comparison Predicates

Operator

 Less than or equal to

< Strictly less than

 Greater than or equal to

> Strictly greater than

Syntax

Less_than_or_equal_predicate ::= Expression "" Expression

Strictly_less_than_predicate ::= Expression "<" Expression

Predicate_greater_than_or_equal ::= Expression "" Expression

Strictly_greater_predicate_than ::= Expression ">" Expression

Typing rule

In predicates x  y, x < y, x  y, x > y, the expressions x and y must be of type Z, ℝ or FLOAT.

Description

Let x and y be expressions representing integers:

• x  y is true if x is less than or equal to y,

• x < y is true if x is strictly less than y,

• x  y is true if x is greater than or equal to y,

• x > y is true if x is strictly greater than y.

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

37

5. EXPRESSIONS

Syntax

The syntax of expressions is shown below:

Expression ::=
 Expressions_primary
 | Expressions_boolean
 | Expressions_arithmetical
 | Expressions_of_couples
 | Expressions_of_sets
 | Construction_of_sets

| Expressions_of_records
 | Expressions_of_relations
 | Expressions_of_functionss
 | Construction_of_functionss
 | Expressions_of_sequences

| Construction_of_sequences

| Expressions_of_trees

Description

An expression is a formula that designates a data item. An expression takes a value that

belongs to a B language type.

The following sections describe the expressions gathered by families. For a family of

expressions, the name of the expression is given, along with their syntax in

mathematical notation, their typing rules, the scope of the data they declare, their

definition, their well defineness, their description and the appropriate examples.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

38

5.1 Primary Expressions

Operator

 Data

. Renaming data

$0 The specific value of a data item

() Expression in brackets

" " Character string

Syntax

Data ::= Ident_ren
 | Ident_ren"$0"

Expr_in_brackets ::= "(" Expression ")"

String_lit ::= String_of_character

Typing rules

 Let d be the name at a type T data item and r a renaming prefix. Then, the type of r.d,

d$0 and r.d$0 is T.

 Let E be a type T expression, the type of (E) is T.

 A literal character string type is STRING

Description

The d expression designates a data item defined in a B component. This may be a formal

component parameter, a deferred or enumerated set, an element in an enumerated set, a

variable, a constant, a formal operation parameter, quantified data item (introduced by a

quantification predicate or by an ANY or LET substitution) or a local variable (introduced

by a VAR substitution). When the data name has prefixes, these express the successive

renamings of d (refer to section 8.3 Instantiating and Renaming).

With data d. The primary expression d$0 can only be encountered in two cases:

• In the predicate of a substitution “becomes such that”, d$0 refers to the value of

variable d before the application of the substitution,

• In the predicate of an ASSERT or WHILE substitution d$0 refers to the value of variable

d in the abstraction.

An expression in brackets is equivalent to the internal expression. It is used to group an

expression. As the analysis of an expression depends on the priority level and on the

associativity of the operators, the use of brackets is sometimes required to represent

certain expressions.

Examples

Data names: x1, Monday, nbr_of_days, a1.b1.CTS_START

Data names before substitutions, or data for the abstraction: x1$0, cc_02.var$0

Expressions in brackets: (x + y) × z, the expression x + y must be in brackets as operator

’×’ has a higher priority than operator ’+’.

Literal character string : “Hello world!”

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

39

5.2 Boolean Expressions

Operator

TRUE value of true

FALSE value of false

bool conversion of a predicate into a Boolean expression

Syntax

Boolean_lit ::= "FALSE"
 | "TRUE"

Conversion_Bool ::= "bool" "(" Predicate ")"

Typing rule

The type of boolean expressions is BOOL.

Definition

BOOL = { FALSE, TRUE }

Description

• TRUE and FALSE are literal constants of the predefined BOOL set (refer to 3.1

Typing foundations). By convention, constant TRUE refers to the boolean value of

true and the constant FALSE refers to the boolean value of false.

• The bool operator is used to convert a predicate into a boolean expression. Let P be

a predicate, the expression Bool (P) takes the value TRUE if P is true and FALSE if

not.

Example

Expression: bool ( x . (x  N1  x = x
2
) takes as its value TRUE.

Expression: bool (b = TRUE) takes as its value b.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

40

5.3 Arithmetical Expressions

Operator

MAXINT The largest implementable integer

MININT The smallest implementable integer

+ Addition

- Difference, and also unary minus

 Product

/ Integer division

mod Modulo

x
y
 Power of

succ Successor

pred Predecessor

floor Floor function

ceiling Ceiling function

real Conversion from Z to ℝ

Syntax

Integer_lit ::= Literal_Integer
 | "MAXINT"
 | "MININT"

Addition ::= Expression "+" Expression

Difference ::= Expression "-" Expression

Unary_Minus ::= "-" Expression

Product ::= Expression "" Expression

Division ::= Expression "/" Expression

Modulo ::= Expression "mod" Expression

Puissance ::= Expression
Expression

Successor ::= "succ" ["(" Expression ")"]

Predecessor ::= "pred" ["(" Expression ")"]

Floor ::= "floor" "(" Expression ")"

Ceiling ::= "ceiling" "(" Expression ")"

Real_conversion ::= "real" "(" Expression ")"

Typing rule

The type of the literal integers and the predefined constants MAXINT and MINTINT is Z.

In expressions: x + y, x - y, - x, x  y and x / y, expressions x and y must be both of the type

Z, ℝ or FLOAT. In expressions: x mod y, x
y, succ(x) and pred(x), expressions x and y must be

type Z ones. The type of these expressions is the same as the operand. The type of the

successor and predecessor functions is P(Z  Z).

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

41

In floor(x) and ceiling(x) expressions, x must be of the type ℝ. The type of floor and ceiling

functions is P(ℝ  Z).

In the expression real(x), x must be of the type Z. The type of real function is P(Z  ℝ).

Well defineness

Expression Well defineness condition

a / b b  Z - {0}

a mod b a  N  b  N1

a
b a  Z  b  N

Description

Let x and y be integer type expressions, then:

• The predefined constants MAXINT and MININT respectively represent the largest and

the smallest concrete integer that can be used in B. The literal integers in B

language must be in the range between MAXINT and MININT. The values of MAXINT

and MININT are set for a given project according to the target machine that the

program will be run on. If integers are stored in a specific machine using four

bytes, then the values of MAXINT and MININT may be -231 and 231-1.

• x + y represents the sum of x and y.

• x - y represents the difference between x and y.

• - x represents the opposite of x.

• x * y represents the multiplication of x by y.

• x / y with x and y some integers, represents the integer division of x by y. For the

integer division to be meaningful, it is necessary that y  0. The integer division is

defined as follows: with x  N and y  N1, then x / y = max({q | q  N  y  q  x}). In

the same way it is possible to define the following constraints: if q = x / y then q  y

 x  x < (q + 1)  y  q  0.

 Then this definition is extended to relative integers, thanks to the signs rule (refer

to laws).

 x / y with x and y some real or floating number, represents the inverse of the

multiplication.

• x mod y represents the remainder of the integer division of x by y. The modulo

operator is only defined for values of x belonging to N and for values of y

belonging to N1.

• If x  Z and y  N, then xy represents x to the integer power of y.

• succ represents the successor function, defined for Z in Z. succ(x) represents the

successor of x, i.e. x + 1.

• pred represents the predecessor function, defined for Z in Z. pred(x) represents the

predecessor of x, i.e. x - 1.

• real represents the conversion function from Z t o ℝ. real(x) is the real z such that z =

x.

Let x be a real type expression, then:

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

42

• floor represents the floor function, defined for ℝ in Z. floor(x) represents the floor of

x, i.e the only integer n such that n x n+1.

• ceiling represents the ceiling function, defined for ℝ in Z. ceiling(x) represents the

ceiling of x, i.e. the only integer n such that n-1 x n.

Laws

With x  N then x0 = 1

With x  N and y  N-{0}, then:

(-x) / y = - (x / y)

x / (-y) = - (x / y)

x mod y = x - y  (x / y)

Examples

b
2
 - 4  a  c

x - x
3
 / 6 + x

5
 / 120

x  a + y
2
 + z mod 9 - 7

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

43

5.4 Arithmetical Expressions (continued)

Operator

max Maximum

min Minimum

card Cardinal

 Sum of arithmetical expressions

 Product of arithmetical expressions

Syntax

Maximum ::= "max" "(" Expression ")"

Minimum ::= "min" "(" Expression ")"

Cardinal ::= "card" "(" Expression ")"

Generalized_sum ::= "" List_ident "." "(" Predicate "|" Expression ")"

Produit_generalized ::= "" List_ident "." "(" Predicate "|" Expression ")"

Typing rule

The type of the arithmetic expressions presented above is Z or ℝ (depending of the type

of the operand).

In the expressions : max (E), min (E), E must be a set of integers, of type P(Z) or P(ℝ).

In the expression : card (E), E must be a set, of type P(T).

In the expressions :  X. (P | E),  X . (P | E), the E expressions must be of type Z or ℝ.

Well defineness

Expression Well defineness condition

max (E) E must be non empty and must have an

upper bound

min (E) E must be non empty and must have a lower

bound

card (E) E must be finite

 x . (P | E)

 x . (P | E)

the { x | P } set must be finite

Scope

In the expressions:  X . (P | E),  X . (P | E), the scope of the list of identifiers X is

predicate P and expression E.

Restrictions

 The variables introduced by the expressions  X . (P | E) or  X . (P | E) must be

typed by an abstract data typing predicate (refer to 3.1 Typing foundations), found

in a list of conjunctions at the highest syntax analysis level for P. These variables

cannot be used in P before they have been typed.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

44

Description

Let E be an expression representing a non empty set of numbers.

• max (E) represents the largest element in E and min (E) represents the smallest

element in E.

Let F be an expression representing a finite set.

• card (F) represents the number of elements in F.

Let X be a list of names of variables that are distinct two by two. Let P be a predicate

that types the variables in the list X and E an integer type expression.

•  (X) . (P | E) represents the sum of expressions E corresponding to values of the X

variables that establish P. If {X | P} = Ø then the sum equals 0.

• (X).(P|E) represents the product of the expressions E that correspond to the values

of the X variables the establish P. If {X | P} = Ø then the product equals 1.

In cases where the list of variables only comprises one name x, the following syntax is

used  x . (P | E) and  x . (P | E).

Examples

With E = {-1, 2, 9, -6},

max (E) = 9 and min (E) = -6

With FRUITS = { Strawberry, Blueberry, Raspberry },

card (FRUITS) = 3

 x . (x  { 1, 2, 3 } | x + 1) = (1 + 1) + (2 + 1) + (3 + 1) = 9

 x . (x  N1  x  3 | x) = 1 × 2 × 3 = 6

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

45

5.5 Expressions of Couples

Operator

m Binary correspondence (maplet)

Syntax

Couple ::= Expression "m" Expression
 | Expression "," Expression

Typing rule

If x and y are respectively types T and U, then x m y is type T × U.

Description

A couple is an ordered pair of elements, its notation is (x m y). A relation R of a set E in a

set F is a set of couples (x m y) where x belongs to E and y belongs to F. If (i m j) is an

element of a relation R, it is said that j is associated with i by R. As the relations are sets,

all of the operators on the sets may be applied to relations.

Examples

rel1 = {(0 m FALSE), (1 m TRUE), (2 m FALSE), (3 m TRUE), (4 m FALSE), (5 m TRUE)}

rel2 = {((0 m FALSE) m 7), ((0 m TRUE) m 9), ((1 m FALSE) m 6), ((1 m TRUE) m 8)}

rel1 is a relation of 0 .. 5 to BOOL and rel2 is a relation of {0, 1} × BOOL to 6 .. 9.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

46

5.6 Building Sets

Operator

Ø Empty-set

Z Set of relative integers

N Set of integers

N1 Set of non null integers

NAT Set of implementable integers

NAT1 Set of non null implementable integers

INT Set of implementable relative integers

ℝ Set of real numbers

FLOAT Set of floating numbers

BOOL Set of Boolean values

STRING Set of character strings

Syntax

Empty_set ::= "Ø"

Number_set ::= "Z"
 | "N"
 | "N1"
 | "NAT"
 | "NAT1"
 | "INT"

 | "ℝ"

 | "FLOAT"

Boolean_set ::= "BOOL"

Strings_set ::= "STRING"

Typing rule

The empty set Ø has no fixed type set. It may take the same type as any other set,

depending on the context that it is used in. Its type is matching P(T).

Type of sets Z, N, N1, NAT, NAT1 and INT is P(Z).

Type of set ℝ is P(ℝ)

Type of set FLOAT is P(FLOAT).

Type of set BOOL is P(BOOL).

Type of set STRING is P(STRING).

Restriction

When using the empty set Ø (in a predicate, an expression or a substitution), the type of

the empty set must be given according with the context.

For example, the predicate Ø = Ø is forbidden. The substitution x := Ø is valid only if x

has already been typed.

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

47

Definitions

NAT  0 .. MAXINT

NAT1  NAT - {0}

INT  MININT .. MAXINT

BOOL  {FALSE, TRUE}

Description

• The empty set Ø is a set that does not have any elements. It may be defined as the

difference between any set and itself, which explains why it can take the same

type as any set type.

• Set Z refers to the set of relative integers. Set N refers to the set of natural

integers. Set N1 refers to the set of stritly positive natural integers.

• Set INT refers to the set of implementable relative integers.

• Set NAT refers to the set of natural implementable integers.

• Set NAT1 refers to the set of stritly positive natural implementable integers.

• Set ℝ is the set of real number.

• Set FLOAT is the set of floating number.

• Set BOOL refers to the set of Boolean values.

• Set STRING refers to the set of character strings.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

48

5.7 Set List Expressions

Operator

× Cartesian product

P Set of sub-sets (power-set)

P1 Set of non empty sub-sets

F Set of finite sub-sets

F1 Set of non empty finite sub-sets

{ | } Set defined in comprehension

{ } Set defined in extension

.. Interval

Syntax

Product ::= Expression "×" Expression

Comprehension_set ::= "{" Ident
+","

 "|" Predicate "}"

Subsets ::= "P" "(" Expression ")"

 | "P1" "(" Expression ")"

Finite_subsets ::= "F" "(" Expression ")"

 | "F1" "(" Expression ")"

Set_extension ::= "{" Expression
+","

 "}"

Interval ::= Expression ".." Expression

Definitions

P1(E)  { F | F  P(E)  F   Ø  

F1(E)  { F | F  F(E)  F   Ø  

Typing rule

Let X be a set P (T1) type expression and Y a P (T2) set type expression. The type of X

× Y is P (T1 × T2). The type of P(X), P1(X), F (X) and F1 (X) is P (P (T1)).

Let E1, ..., En be expressions of the same type T, then the type of { E1, .., En } is P (T).

Let X be a list of identifiers that are distinct taken two by two x1, ..., xn typed in predicate

P and with types T1, .., Tn. Then, le type de the comprehension set { X | P } is

P (T1 × .. × Tn). In cases where X comprises only one identifier, the type of { X | P } is

P (T1).

Let X and Y be integer Z type expressions, then the type of X .. Y is P (Z).

Scope

Let X be a list of identifiers and P a predicate, then the comprehension set is { X | P },

the scope of identifiers in list X is predicate P.

Restrictions

 The X variables introduced by the expressions matching { X | P } must be distinct

two by two

 The X variables introduced by the expressions matching { X | P } must be typed by

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

49

an abstract data typing predicate (refer to 3.1 Typing foundations), located in a list

of conjunctions at the highest syntax analysis level in P. These variables cannot be

used in P before they have been typed.

Description

• Let E1 and E2 be sets, then E1 × E2 refers to the Cartesian product of E1 and E2, i.e.

the set of couples where the first element belongs to E1 and the second element

belongs to E2. If E1, E2 and E3 are sets, E1 × E2 × E3 and (E1 × E2) × E3 designated

the set of couples ((x1 m x2) m x3), and E1 × (E2 × E3) refers to the set of couples

(x1 m (x2 m x3)).

• Let x1, ..., xn be expressions, then the extension set { x1, ..., xn} represents the set

with elements x1, ..., xn.

• Let E1 be a set, then P (E1) represents the set of parts of E1. P1 (E1) represents

the set of non empty parts of E1. F (E1) represents the set of finite parts in E1.

F1 (E1) represents the set of non empty finite parts in E1.

• Let X be a list of identifiers x1, ..., xn and P a predicate that types X and expresses

the properties on X. Then, the set in comprehension { X | P } represents the set of

maplets (x1 m ... m xn) that verify P. In cases where X comprises only one

identifier, { X | P } represents the set of x1 elements that verify P.

• Let x1 and x2 be integers, then the interval x1 . . x2 represents the set of integers that

are greater than or equal to x1 and less than or equal to x2. Therefore in cases

where x1 > x2 , x1 . . x2 represents the empty set.

Examples

Let E1 and E2 be sets defined in extension by: E1 = { 1, 2, 3 } and E2 = { 4, 5 }

E1 × E2 = { (1 m 4), (1 m 5), (2 m 4), (2 m 5), (3 m 4), (3 m 5) }

{ x1 | x1  E1  x1 mod 2 = 1 } = { 1, 3 }

{ x1, x2 | x1  N  x2  N  x1 < x2  x2 < 3} = {(0 m 1), (0 m 2), (1 m 2)}

P(E1) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

P1(E1) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

F (E1) = P(E1)

F1(E1) = P1(E1)

-1..5 = {-1, 0, 1, 2, 3, 4, 5}

6..4 = Ø

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

50

5.8 Set List Expressions (continued)

Operator

- Difference

 Union

 Intersection

union Generalized union

inter Generalized intersection

U Quantified union

I Quantified intersection

Syntax

Difference ::= Expression "-" Expression

Union ::= Expression "" Expression

Intersection ::= Expression "" Expression

Generalized_union ::= "union" "(" Expression ")"

Generalized_intersection ::= "inter" "(" Expression ")"

Quantified_union ::= "U" List_ident "." "(" Predicate
+""

 "|" Expression ")"

Quantified_intersection ::= "I" List_ident "." "(" Predicate
+""

 "|" Expression ")"

Definitions

If S1  T and S2  T,

S1 - S2  { x | x  T  (x  S1  x  S2) }

S1  S2  { x | x  T  (x  S1  x  S2) }

S1  S2  { x | x  T  (x  S1  x  S2) }

If U  P(P(T)),

union(U)  { x | x  T  y . (y  U  x  y) }

If U  P1(P(T)),

inter(U)  { x | x  T  y . (y  U  x  y) }

If x . (P  S  T)),

U x.(P | S)  { y | y  T  z . (z  T  P  y  S) }

If x . (P S  T)) and x . (P),

I x.(P | S)  { y | y  T  z . (z  T  P y  S) }

Typing rules

In expressions S1 - S2, S1  S2 and S1  S2, sets S1 and S2 must be the same type in form

P(T). The type of these expressions is P(T).

In expressions union(E1) and inter(E1), E1 must be a set of sets, with type P(P(T)). The type

of these expressions is P(T).

In expressions U X . (P | S) and I X . (P | S), X refers to a list of identifiers, P is a predicate

that must type X and S is a type P(T) set. The type of these expressions is P(T).

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

51

Well defineness

Expression Well defineness condition

inter(E) E must not be empty

I X . (P | E) {X | P } must not be empty

Scope

In expressions U X.(P | S) and I X .(P | S), the range of the list of identifiers X is predicate P

and expression S.

Restrictions

 The X variables introduced by the expressions matching U X.(P | S) and I X .(P | S)

must be typed by an abstract data typing predicate (refer to section 3.1 Typing

foundations), located in a list of conjunctions at the highest level of syntax

analysis in P. These variables cannot be used in P before they are typed.

Description

Let E and F be sets.

• E - F, represents the difference between sets E and F, i.e. the set of elements that

belong to E but not to F.

• E  F represents the union between sets E and F, i.e. the set of elements that belong

to E or to F.

• E  F represents the intersection between sets E and F i.e. the set of elements that

belong to E and to F.

Let ENS be a set of sets.

• union(ENS) represents the generalized union of elements of ENS, i.e. the set

obtained by the union of sets forming the elements of ENS.

• inter(E1) represents the generalized intersection of elements of ENS, i.e. the set

obtained in the intersection of sets that make up the elements of ENS.

Let X be a list of variables, P a predicate that types the list of X variables and then

expresses a property on X. With E a set defined as a function of X.

• U X . (P | E) represents the union of sets E indexed using a list of X variables that

verify predicate P. If P is false, then the quantified union represents the empty set.

• I X . (P | E) represents the intersection of sets E indexed using a list of X variables

that verify predicate P. If P is false, then the quantified intersection is meaningless.

Examples

With E1 = {-1, 0, 3, 7, 8} and F1 = {-3, -1, 4, 7, 9},

E1 - F1 = {0, 3, 8}

E1  F1 = {-3, -1, 0, 3, 4, 7, 8, 9}

E1  F1 = {-1, 7}

With S1 = {{1}, {1, 2}, {1, 3}},

union(S1) = {1, 2, 3}

inter(S1) = {1}

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

52

With E2 = {2, 4},

Ux1.(x1  E2 | {y1 | y1  N  y1  x1}) = {0, 1, 2}  {0, 1, 2, 3, 4} = {0, 1, 2, 3, 4}

Ix1.(x1  E2 | {y1 | y1  N  y1  x1}) = {0, 1, 2}  {0, 1, 2, 3, 4} = {0, 1, 2}

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

53

5.9 Record expressions

Operator

struct Set of records

rec record in extension

’ access to a record field (quote operator)

Syntax

Set_of_records ::= “struct” “(“ (Ident “:” Expression)
+”,”

 “)”

Extensive_record ::= “rec” “(“ ([Ident “:”] Expression)
+”,”

 “)”

Record_field ::= Expression “’” Ident

Typing rules

Let n be an integer greater than or equal to 1, and i be an integer included between 1 and

n.

In the expression struct (Ident1 : E1, ..., Identn : En), Ei must be of type P(Ti). Then the

type of the expression is P(struct(Ident1 : T1,, Identn : Tn). In the expression

rec(Ident1 : x1,, Identn : xn), let Ti be the type of xi. Then the type of the expression

is struct(Ident1 : T1,, Identn : Tn). In the expression rec (x1, ..., xn), let Ti be the type

of each xi expression .Then the type of the expression matches struct(Ident1 : T1, ...,

Identn : Tn), where the Identi are identifiers which are distinct two by two. In the

expression Record'Identi, the type of Record must match struct(Ident1 : T1,, Identn :

Tn), where Identi is the ith label of the record type. Then, the type of the expression is

Ti.

Restrictions

1. In the expression struct(Ident1 : E1,, Identn : En), the names of the Identi fields

must be distinct two by two.

2. In the expression rec(Ident1 : x1, ..., Identn : xn) , the names of the Identi fields must

be distinct two by two.

3. A record in extension, without labels, of the form rec(x1, ..., xn), cannot be used to

type a piece of data.

Description

Let n be an integer greater than or equal to 1, and i be an integer included between 1 and

n.

 Let E1,……., En be sets and Ident1,……Identn be identifiers which are distinct two

by two, then struct(Ident1 : E1, ..., Identn : En) refers to a set of record data. This set

is the non-empty ordered collection of the n sets E1,…..En called fields of the set of

records. Each field has a name Identi called its label.

 Let x1,…,xn be expressions and Identi1,……Identin be identifiers distinct two by

two, then rec(Ident1 : x1, ..., Identn : xn) refers to a record data, in which the value

of each Identi fields is xi. If this record data is not used to type another piece of data

(refer to Typing of abstract data), then the labels are optional. The simplified

notation rec(x1, ... xn) can then be used instead of the previous one.

 Let rc be a piece of record data of which one of the labels is identi, then the

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

54

expression rc'identi built up with the help of the quote operator refers to the value of

the identi field of the record data rc.

Examples

RES_SET = struct(Mark : 0..20, Good_enough : BOOL) represents a set of records with

two fields. The first field is called Mark and it refers to the set 0..20. The second field is

called Good_enough and refers to the Boolean set.

Result = rec(Mark : 12, Good_enough : TRUE) represents a piece of data belonging to

the RES_SET set. The value of the Mark field is 12 and that of the Good_enough field is

TRUE. If the result data has already been typed, then the preceding writing can be

simplified to Result = (12, TRUE).

Result'Mark represents the value of the field Mark, that is to say 12.

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

55

5.10 Sets of Relations

Operator

 Setsof relations

Syntax

Relations ::= Expression "" Expression

Definition

X  Y  P(X × Y)

Typing rule

In the expression X  Y, X must be a P(T1) type and Y must be a P(T2) type. The type of

X  Y is P(P(T1×T2)).

Description

Let E and F be sets. A relation of E into F is a set of couples (x m y), where x is an

element of E and where y is an element of F.

E  F designates the set of relations between set E into set F. This is another notation for

P(E × F).

Examples

0..5  BOOL represents the set of relations for the interval 0..5 in the BOOL set. The

following relations belong to this set:

rel1 = {(0 m FALSE), (1 m TRUE), (2 m FALSE), (3 m TRUE), (4 m FALSE), (5 m TRUE)}

rel2 = {(0 m FALSE), (0 m TRUE), (3 m TRUE)}

rel3 = Ø

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

56

5.11 Expressions of Relations

Operator

id Identity

r
-1

 Reverse

prj1 First projection

prj2 Second projection

; Composition

 Direct product

|| Parallel product

Syntax

Identity ::= "id" "(" Expression ")"

Inverse ::= Expression
-1

First_projection ::= "prj1" "(" Expression "," Expression ")"

Second_projection ::= "prj2" "(" Expression "," Expression ")"

Composition ::= Expression ";" Expression

Direct_product ::= Expression "" Expression

Parallel_product ::= Expression "||" Expression

Definitions

id (X) = { x, y | x  X  y = x }

If R  X  Y,

R-1 = { y, x | (y m x)  Y  X  (x m y)  R }

prj1 (E, F) = { x, y, z | x, y, z  E × F × E  z = x }

prj2 (E, F) = { x, y, z | x, y, z  E × F × F  z = y }

If R1  T  U and R2  U  V,

R1 ; R2 = { x, z | x, z  T × V   y . (y  U  (x m y)  R1  (y m z)  R2) }

If R1  T  U and R2  T  V,

R1  R2 = { x, (y, z) | x, (y, z)  T × (U × V)  (x m y)  R1  (x m z)  R2 }

If R1  T  U and R2  V  W,

R1 || R2 = { (x, y), (z, a) | (x, y), (z, a)  (T × V) × (U × W)  (x m z)  R1  (y m a)  R2 }

Typing rule

In the expression id(E), E must be a P(T) type. Then id(E) is a P(T × T) type.

In the expression R-1, R must be a P(T × U) type. Then R-1 is a P(U × T) type relation.

In the expressions prj1 (E, F) and prj2 (E, F), E and F must be P(T) and P(U) types. Then

prj1 (E, F) is a type P(T × U × T) relation and prj2 (E, F) is a type P(T × U × U) relation.

In the expression E  F, E must be a P(T × U) type and F must be a P(U × V) type. Then E ;

F is a P(T × V) type relation.

In the expression E  F, E must be a P(T × U) type and F must be a P(T × V) type. Then

E  F is a P(T ×(U × V)) type relation.

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

57

In the expression E || F, E must be a P(T × U) type and F must be a P(V × W) type. Then,

E || F is a P((T × V) × (U × W)) type relation.

Restriction

The operators ; and || representing respectively the composition and the parallel product

of two relations, must not be used if there is a possible ambiguity with the operators

representing substitutions. Brackets must be use in order to avoid these ambiguities. For

example, it is forbidden to write R3:=R1 ; R2. Use R3:=(R1 ; R2) instead.

Description

• Let X be a set, id (X) represents the identity relation of X in itself, i.e. the relation

that associates any element of X with this same element.

• Let R be a relation, R-1 represents the inverse relation of R. i.e. the relation made up

of inverse couples to those in R. If (x m y)  R then (y m x)  R-1.

Let X and Y be sets,

• prj1(X, Y) represents the first projection relation of X×Y in X, that with any couple (x1,

y1) of X×Y associates with the first component x1 of the couple.

• prj2(X, Y) represents the second projection relation of X×Y in Y, that with any couple

(x1 m y1) of X×Y associates with the second component y1 of the couple.

• Let R1 be a relation from set A to set B and R2 a relation from set B to set C. Then

R1 ; R2 represents the composition of R1 and R2. It contains the set of couples

(a1 m c1) so that there exists an element b1 in B so that (a1 m b1)  R1 and (b1 m

c1)  R2.

• Let R1 be a relation from set A to set B and R2 a relation from set A to set C. Then

R1  R2 represents the direct product of R1 and R2. This relation contains the set of

couples a1 m (b1 m c1) so that there exists a couple (a1 m b1) from R1 and a couple

(a1 m c1) from R2.

• Let R1 be a relation from set A to set B and R2 a relation from set C to set D. Then

R1 || R2 represents the parallel product of R1 and R2. This relation contains the set

of couples ((a1 m c1) m (b1 m d1)) so that there exists a couple (a1 m b1) de R1 and a

couple (c1 m d1) of R2.

Examples

With E1 = {3, 5},

id (E1) = {(3 m 3), (5 m 5)}

With R1 = {(0 m 4), (2 m 4), (2 m 7), (3 m 3)},

R1
-1

 = {(4 m 0), (4 m 2), (7 m 2), (3 m 3)}

With E1 = {0, 1} and F1 = {-1, 2},

prj1 (E1, F1) = {((0 m -1) m 0), ((0 m 2) m 0), ((1 m -1) m 1), ((1 m 2) m 1)}

prj2 (E1, F1) = {((0 m -1) m -1), ((0 m 2) m 2), ((1 m -1) m -1), ((1 m 2) m 2)}

With R1 = {(0 m 2), (1 m 5), (2 m 5), (3 m 7)} and R2 = {(0 m 0), (2 m -1), (5 m 8), (6 m 9)},

R1 ; R2 = {(0 m -1), (1 m 8), (2 m 8)}

With R1 = {(0 m 0), (1 m 10), (2 m 20)} and R2 = {(0 m 0), (1 m 20), (2 m 40), (3 m 60)},

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

58

R1  R2 = { (0 m (0 m 0)),

 (1 m (10 m 20)),

 (2 m (20 m 40))}

With R1 = {(0 m 7), (1 m 6)} and R2 = {(10 m 11), (12 m 12)},

R1 || R2 = { ((0 m 10) m (7 m 11)),

 ((0 m 12) m (7 m 12)),

 ((1 m 10) m (6 m 11)),

 ((1 m 12) m (6 m 12))}

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

59

5.12 Expressions of Relations (continued)

Operator

R
n
 Iteration

R
*
 Transitive and reflexive closure

R
+
 Transitive closure

Syntax

Ittration ::= Expression
Expression

Reflexive_closure ::= Expression
*

Closure ::= Expression
+

Definitions

Let R be a relation of a set E1 in itself and n a natural integer.

R
1
 = iR

R
n+1

 = R ; Rn

R* = Un.(n  N | R
n
)

R
+
 = Un.(n  N1 | R

n
)

Typing rules

In the expression Rn, R is a P(t×t) type and n is a Z type. The type of expression is P(t×t).

In the expressions R1
* and R1

+
, R1 must be a P(t×t) type. The type of expressions is P(t×t).

Well defineness

Expression Well defineness condition

R
n n must belong to N

Description

Let R be a relation of a set E in itself and n a natural integer.

• R
n represents the relation R iterated n times in relation to the composition operator.

• R
* represents the transitive and reflexive closure of R. It is the smallest relation that

contains R that is transitive and reflexive.

• R
+ represents the transitive closure of R. It is the smallest relation containing R that

is transitive.

Examples

With E = {1, 2, 3}, R = {(1 m 3), (2 m 1), (2 m 2), (3 m 3)},

R
1
 = R

R
2
 = {(1 m 3), (2 m 1), (2 m 2), (2 m 3), (3 m 3)}

R
+
 = R

2

R
*
 = {(1 m 1), (1 m 3), (2 m 1), (2 m 2), (2 m 3), (3 m 3)}

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

60

5.13 Expressions of Relations (continued)

Operator

dom Domain

ran Range

 [] Image

Syntax

Domain ::= "dom" "(" Expression ")"

Range ::= "ran" "(" Expression ")"

Image ::= Expression "[" Expression "]"

Definitions

If R  E1  E2,

dom = { x | x  E1   y . (y  E2  (x m y)  R) }

ran = { y | y  E2   x . (x  E1  (x m y)  R) }

If R  E1  E2 and F  E1,

R[F] = { y | y  E2   x . (x  F  (x m y)  R) }

Typing rule

In the expressions dom (R) and ran (R), R must be a P(T × V) type relation. The type of dom

will be P(T) and the type of ran is P(V).

In the expression R[E], R must be a P(T × V) type relation and E must be a P(T) type set.

Then the expression is a P(V) type one.

Description

Let R be the relation of set A with set B.

• dom designates the domain of R, i.e. the set of elements a in A for which there

exists an element b in B such as (a m b)  R.

• ran designates the range of R (range), i.e. the set of elements b in B for which there

exists an element (a m b) in R.

Let E be a part of A,

• R [E] designates the image of E for R. This is the set of elements of B that are

associated with an element of E via the relation R.

Examples

With R = {(0 m 4), (2 m 4), (2 m 7), (3 m 3)},

dom = {0, 2, 3}

ran = {4, 7, 3}

With E = {-1, 0, 1, 2},

R [E] = {4, 7}

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

61

5.14 Expressions of Relations (continued)

Operator

r Restriction in the domain

a Subtraction in the domain

R Restriction in the range

A Subtraction in the range

+ Overwrite

Syntax

Domain_restriction ::= Expression "r" Expression

Domain_subtraction ::= Expression "a" Expression

Range_restriction ::= Expression "R" Expression

Subtractions_range ::= Expression "A" Expression

Overwrite ::= Expression "+" Expression

Definitions

If R  E1  E2 and F  E1,

F r R = { x, y | (x m y)  R  x  F }

F a R = { x, y | (x m y)  R  x  F }

If R  E1  E2 and F  E2,

R R F = { x, y | (x m y)  R  y  F }

R A F = { x, y | (x m y)  R  y  F }

If R  E1  E2 and Q  E1  E2,

Q + R = { x, y | (x, y)  E1 × E2  (((x m y)  Q  x  dom(R))  (x m y)  R) }

Typing rule

In the expressions E1 r R and E1 a R, R must be a type P(T × V) relation and E1 must be a

P(T) set. The type of expressions is P(T × V).

In the expressions R R F and R A F, R must be a type P(T × V) relation and F must be a type

P(V) set. The type of expression is P(T × V).

In the expression R1 + R2, R1 and R2 must be type P(T × V) relations. The expression type

is P(T × V).

Description

Let R1 and R2 be relations, E1 and F1 be sets.

• E1 r R1 designates the restriction on the domain of R1 for set E1. This is the set of

couples (x1 m y1) of R1 for which x1 belongs to E1.

• E1 a R1 designates the subtraction on the domain of R1 for set E1. This is the set of

couples (x1 m y1) of R1 for which x1 does not belong to E1.

• R1 R F1 designates the restriction on the range of R1 for set F1. This is the set of

couples (x1 m y1) of R1 for which y1 belongs to F1.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

62

• R1 A F1 designates the subtraction on the range of R1 for set F1. This is the set of

couples (x1 m y1) of R1 for which y1 does not belong to F1.

• R1 + R2 designates the overwriting of R1 with R2. This is the relation comprising

elements of R2 and of R1 the first element of which does not belong to the domain

of R2. Therefore in the relation obtained, the elements of R2 in (x1 m zi) notation

overwrite any elements (x1 m yi) in R1.

Examples

With relation R = {(2 m 1), (2 m 8), (3 m 9), (4 m 7), (4 m 9)}, with sets E = {1, 2, 3} and

F = {5, 7, 9},

E r R = {(2 m 1), (2 m 8), (3 m 9)}

E a R = {(4 m 7), (4 m 9)}

R R F ={(3 m 9), (4 m 7), (4 m 9)}

R A F = {(2 m 1), (2 m 8)}

With relations R1 = {(2 m 1), (2 m 8), (3 m 9), (4 m 7), (4 m 9)} and R2 = {(0 m -1), (1 m 7), (2

m 9)},

R1 + R2= {(0 m -1), (1 m 7), (2 m 9), (3 m 9), (4 m 7), (4 m 9)}

1 *

2 *

3 *

* 5

* 7

* 9

E

F

R R F

4 *

* 1

* 8

1 *

2 *

3 *

* 1

* 5

* 8

E

F

R A F

4 *

* 7

* 9

1 *

2 *

3 *

4 *

* 1

* 5

* 7

* 8

* 9

E

F

E r R

1 *

4 *

* 1

* 5

* 7

* 8

* 9

E

F

E a R

2 *

3 *

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

63

5.15 Sets of Functions

Operator

2 Partial functions

3 Total functions

4 Partial injections

5 Total injections

6 Partial surjections

7 Total surjections

9 Total bijections

Syntax

Partial_functions ::= Expression "2" Expression

Total_functions ::= Expression "3" Expression

Partial_injections ::= Expression "4" Expression

Total_injections ::= Expression "5" Expression

Partial_surjections ::= Expression "6" Expression

Total_surjections ::= Expression "7" Expression

Total_bijections ::= Expression "8" Expression

Definitions

E1 2 E2  { r | r  E1 1 E2  (r-1 ; r)  id (E2) }

E1 3 E2  { f | f  E1 2 E2  dom (f) = E1 }

E1 4 E2  { f | f  E1 2 E2  f-1  E2 2 E1 }

E1 5 E2  E1 4 E2  E1 3 E2

E1 6 E2  { f | f  E1 2 E2  ran (f) = E2 }

E1 7 E2  E1 6 E2  E1 3 E2

E1 9 E2  E1 5 E2  E17 E2

Typing rule

In expressions E1 2 E2, E1 3 E2, E1 4 E2, E1 5 E2, E1 6 E2, E1 7 E2, E1 9 E2, E1 and

E2 are any types P(T1) and P(T2). The type of expressions is P(P(T1×T2)).

Description

With E1 and F1 in sets.

• E1 2 E2 designated the set of partial functions of E1 in E2. A partial function of E1

in E2 is a relation that does not contain two distinct couples with the same first

element.

• E1 3 E2 designates the set of total functions of E1 in E2. A total function of E1 in

E2 is a partial function whose domain is exactly E1 (and is not only included in E1

as is the case for a partial function).

• E1 4 E2 designated the set of partial injections of E1 in E2. A partial injection of E1

in E2 is a partial function that with two different elements of E1 associates two

different elements of E2 using a partial function. The reverse of a partial injection

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

64

of E1 in E2 is a partial function of E2 in E1. The total injection concept, the symbol

of which is 5, is defined in a similar way.

• E1 6 E2 designate the set of partial surjections of E1 in E2. A partial surjection of

E1 in E2 is a partial function that for any element of E2 has a correspondence with

an element of E1. The concept of a total surjection, the symbol of which is 7, is

defined in a similar way.

Examples

If r1 = {(0 m 1), (1 m 2), (2 m 2)},

then r1  {0, 1, 2, 3} 2 {0, 1, 2}

and r1  {0, 1, 2} 3 {0, 1, 2}

If r2 = {(0 m 1), (1 m 2), (2 m 3)},

then r2  {0, 1, 2, 3} 4 {0, 1, 2, 3}

and r2  {0, 1, 2} 5 {0, 1, 2, 3}

If r3 = {(0 m 1), (1 m 2), (2 m 2)},

then r3  {0, 1, 2, 3} 6 {1, 2}

and r3  {0, 1, 2} 7 {1, 2}

If r4 = {(0 m 1), (1 m 2), (2 m 3)},

then r4  {0, 1, 2} 9 {1, 2, 3}

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

65

5.16 Expressions of Functions

Operator

 Lambda-expression

f () Evaluation of the function

fnc Transformed into a function

rel Transformed into a relation

Syntax

Lambda_expression ::= "" List_ident "." "(" Predicate "|" Expression ")"

Evaluation_functions ::= Expression "(" Expression ")"

Transformed_function ::= "fnc" "(" Expression ")"

Transformed_relation ::= "rel" "(" Expression ")"

Definitions

If !x . (x  t  E  u),

x . (x  t  P | E)  { x, y | x, y  t × u  P  y = E } where y is not free in x, t, P and E

If f  t 2 u and E  dom (f),

f(E)  choice (f[{E}])

Remember, the choice operator (refer to [B-Book] section 2.1.2) applied to a non empty

set, designates a “privileged” element of this set. In this case, the set in question, f[{E}],

has only one element. The privileged element in this set can therefore only be this

element. Important, the choice operator must not be confused with the “limited selection”

substitution (refer to 6.6) that uses the keyword CHOICE.

Typing rule

In expression (X).(P|E), X designates a list of identifiers that are distinct two by two, P is

a predicate that must start by typing X, X is then a Cartesian product type T1×..×Tn. E is a

type T expression. The expression is a P(T1 × .. × Tn × T) type.

In expression f1(y1), f1 is a P(T1 × T2) type expression and y1 must be a T1 type. The

expression is a T2 type.

In expression fnc(R), R must be a P(T1×T2) type relation. The expression type is

P(T1×P(T2)).

In expression rel(R), R represents a relation, the elements of which are sets, its type must

be P(T1×P(T2)). The expression type is P(T1×T2).

Well defineness

Expression Well defineness condition

f(x) x  dom(f)  f  dom(f) 3

ran(f)

rel(f) f  dom(f) 3 ran(f)

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

66

Scope

In expressions x1.(P|E) and (X).(P|E), the scope of x1 and X is predicate P and expression

E.

Restriction

 The variables X introduced by the expressions matching  X . (P | E) must be typed

by an abstract data typing predicate (refer to section 3.1 Typing foundations),

located in a list of conjunctions at the highest syntax analysis level of P. These

variables cannot be used in P before they have been typed.

Description

• A lambda expression is used to define a function by giving, in an expression, its

value for each element of the function domain. Let x1 be an identifier and P1 a

predicate that starts by typing x1 and E1 an expression that depends on x1. Then

x1.(P1 | E1) designates a lambda expression. This is the function made up of

couples (x1, E1) for each element of x1 that verifies P1. In the same way, if X is a list

of identifiers that are distinct when taken two by two (x1,.., xn), then (X).(P1|E1) is

the function made up of elements (x1,.., xn, E1) where X verifies P1.

• Let R1 be a function of E1 in f1 and let x1 be an element of E1. Then E1(x1)

designates the only y1 element of f1 so that the couple (x1 m y1) belongs to R1. The

expression has a meaning, only if x1 belongs to the domain of R1.

• With R1 a relation of E1 in f1. Then fnc (R1) designates the transforming into a

function of R1. This is the function of E1 in P(f1) that for each element x1 of the

domain of R1 assigns the set of elements of f1 linked to x1 via the relation R1.

• Let Fct be a function of E1 in P(f1). Then rel (Fct) designates the transforming into a

relation of Fct. This is the relation of E1 in f1 made up of couples (x1 m y1) so that

x1 belongs to the domain of Fct and so that y1 belongs to the element associated

with x1 by the relation Fct.

Examples

The lambda expression: x1.(x1Z | x1  2) defines the multiply by 2 function in Z.

With function f1 = {(0 m 6), (1 m 2), (3 m 6), (4 m -5)},

f1(3) = 6

With relation R1 = {(0 m 1), (0 m 2), (1 m 1), (1 m 7), (2 m 3)},

fnc (R1) = {(0 m {1, 2}), (1 m {1, 7}), (2 m {3})}

With function f1 = {(-1 m {0, 2}), (1 m {6, 8}), (3 m {3})},

rel (f1) = {(-1 m 0), (-1 m 2), (1 m 6), (1 m 8), (3 m 3)}

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

67

5.17 Sets of Sequences

Operator

seq Sequences

seq1 Non empty sequences

iseq Injective sequences

iseq1 Injective non empty sequences

perm Permutations

 [] Empty sequence

 [] Sequence in extension

Syntax

Sequences ::= "seq" "(" Expression ")"

Sequences_non_empty ::= "seq1" "(" Expression ")"

Sequences_injective ::= "iseq" "(" Expression ")"

Sequences_inj_non_empty ::= "iseq1" "(" Expression ")"

Permutations ::= "perm" "(" Expression ")"

Empty_sequence ::= "[]"

Sequence_extension ::= "[" Expression
+","

 "]"

Typing rule

In the seq (E), seq1 (E), iseq (E), iseq1 (E), perm (E) expressions, E must designate a P(t) type

set. Then expressions are P(Z×t) type.

The empty sequence [] has no established fixed type. It may take the type of any

sequence. Its type is therefore matching P(Z×t).

In the extension sequence [E1, ..., En], the elements E1, ..., En of the sequence must all be

of the same type t. The sequence type is then P(Z×t).

Well defineness

Expression Well defineness condition

perm (E) E must be a finite set

Definitions

seq (E) = n . (n  N | 1..n  E)

seq1 (E) = seq (E) - {Ø}

iseq (E) = {s | s  seq(E)  s  N1 4 E}

iseq1 (E) = iseq (E) - {Ø}

perm (E) = {s | s  iseq (E)  s  N1 6 E}

[] = Ø

[E1, ..., En] = {(1 m E1), ..., (n m En)}

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

68

Description

The sequences handled in B language are finite sequences. The sequences are modeled

as total functions of an integer interval matching 1 .. n, where n  N, to any set E. As the

sequences are functions, all of the function handling operators apply to the sequences. It

is said that the n
th

 element in a sequence is the value en so that (n m en) belongs to the

sequence.

• seq (E) designates the set of sequences, the elements of which belong to set E.

• seq1 (E) designates the set of sequences in set E and which is not the empty

sequence.

• iseq (E) designates the set of injective sequences in set E.

• iseq1 (E) designates the set of injective sequences in set E and which is not the

empty sequence.

• perm (E) designates the set of bijective sequences in set E. These sequences are

called permutations. Note that set E must be finite.

• [] designates the empty sequence empty. It is a function that does not have any

elements. The empty sequence is none other than the empty set Ø.

• [E1, ..., En] designates the extension sequence, the n elements of which are in

sequence E1, ..., En.

Examples

With set E = {0, 1, 2},

[]  seq (E), [0]  seq (E), [1, 2, 0]  seq (E), [0, 2, 2, 0, 1, 0, 0]  seq (E)

[0]  seq1 (E), [1, 2, 0]  seq1 (E), [0, 2, 2, 0, 1, 0, 0]  seq1 (E)

[]  iseq (E), [1]  iseq (E), [1, 2, 0]  iseq (E), [0, 2]  iseq (E), but [0, 1, 0]  iseq (E)

[1]  iseq1 (E), [1, 2, 0]  iseq1 (E), [0, 2]  iseq1 (E), but [0, 1, 0]  iseq1 (E)

[0, 1, 2]  perm (E), [1, 0, 2]  perm (E), [2, 1, 0]  perm (E), but [0, 1]  perm (E)

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

69

5.18 Sequence Expressions

Operator

size Size

first First element

last Last element

front Front

tail Tail

rev Reverse

Syntax

Sequence_size ::= "size" "(" Expression ")"

Sequence_first_element ::= "first" "(" Expression ")"

Sequence_last_element ::= "last" "(" Expression ")"

Sequence_front ::= "front" "(" Expression ")"

Sequence_tail ::= "tail" "(" Expression ")"

Reverse_sequence ::= "rev" "(" Expression ")"

Typing rule

In expressions size (E), first (E), last (E), front (E), tail (E) and rev (E), E must designate a P(Z

× T) type sequence. The type of size (E) is an integer type. The type of expressions first (E)

and last (E) is t. The type of sequences front (E), tail (E) and rev (E) is P(Z × T).

Well defineness

Expression Well defineness condition

size (s)

first (s)

last (s)

front (s)

tail (s)

rev (s)

s  seq (ran (s))

Definitions

size (s) = card (s)

first (s) = s(1)

last (s) = s(size (s))

front (s) = s q (size (s) - 1)

tail (s) = s w 1

rev(s) = % i . (i  1..size (s) | s(size (s) - i + 1))

Description

Let s1 be a sequence and s2 a non empty sequence,

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

70

• size (s1) represents the number of elements in the sequence,

• first (s2) represents the first element in s2,

• last (s2) represents the last element in s2,

• front (s2) represents sequence s2, without its last element,

• tail (s2) represents sequence s2, without its first element,

• rev (s1) represents the sequence comprising the same elements as s1, but in reverse

order.

Examples

With sequence s1 = [5, 7, -2, 1],

size (s1) = 4

first (s1) = 5

last (s1) = 1

front (s1) = [5, 7, -2]

tail (s1) = [7, -2, 1]

rev (s1) = [1, -2, 7, 5]

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

71

5.19 Sequence Expressions (continued)

Operator
 Concatenation

k Insert in front

j Insert at tail

q Restrict in front

w Restrict at tail

conc General concatenation

Syntax

Concatenation ::= Expression "" Expression

Insert_front ::= Expression "k" Expression

Insert_tail ::= Expression "j" Expression

Restrict_front ::= Expression "q" Expression

Restrict_tail ::= Expression "w" Expression

Concat_general ::= "conc" "(" Expression ")"

Typing rule

In expressions s1) s2, s1 and s2 designate P(Z × T) type sequences.

In expressions E1  s1 and s1  E1, s1 refers to a P(Z × T) type sequence and E1 refers to

an element in the sequence, of type T.

In expressions s1 q n and s1 w n, s1 refers to a type P(Z × T) sequence and n must be an

integer type.

In expression conc(s1), s1 refers to a sequence, the elements of which are sequences of

the same type. s1 must therefore be a P(Z×P(Z × T)) type.

Well defineness

Expression Well defineness condition

s  n

s  n n must belong to the interval 0 .. size(s)

Definitions

s  n  (1 .. n) r s

s  n  i. (i  1 .. size(s) - n | s(n+i))

s1) s2 = s1 u % i . (i  size(s1)+1 .. size(s1)+size(s2) | s2(i - size(s1)))

x k s = {1 m x} u % i . (i  2 .. size(s)+1 | s(i - 1))

s j x = s u {size (s) + 1 m x}

conc ([]) = []

conc (x k s) = x) conc (s)

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

72

Description

With s1 and s2 as sequences,

• s1) s2 represents the sequence obtained by concatenating in sequence, sequences s1

and s2.

With s1 a sequence, E1 a new element and n a relative integer,

• E1  s1 represents the sequence obtained by inserting at the front of the sequence

s1 the new element E1.

• s1  E1 represents the sequence obtained by inserting at the tail of the sequence s1

the new element E1.

• s1  n represents the sequence obtained by restricting s1 to the n first elements. If n

is greater than the size of s1, the sequence obtained is s1.

• If n is less than or equal to the size of s1 then, s1  n represents the sequence

obtained by eliminating from s1 its n first elements.

Let S1 be a sequence whose elements are sequences,

• conc(S1) represents the sequence obtained by concatenating in sequence all of the

sequences that are elements of S1.

Examples

With sequences s1 = [3, 1] and s2 = [0, -2, 4],

s1  s2 = [3, 1, 0, -2, 4]

2  s1 = [2, 3, 1]

s1  2 = [3, 1, 2]

s2  2 = [0, -2], s2  4 = [0, -2, 4]

s2  2 = [4], s2  3 = [], s2  0 = [0, -2, 4]

With sequence S1 = [[2, 5], [-1, -2, 9], [], [5]],

conc(S1) = [2, 5, -1, -2, 9, 5]

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

73

5.20 Tree sets

Operator

tree Trees

btree Binary Trees

Syntax

Trees ::= “tree” “(“ Expression “)”

Binary_trees ::= “btree” “(“ Expression “)”

Typing Rules

In the expressions tree(S) and btree(S), S must designate a set of the type P(T). The type of

tree(S) and of btree (S) is P(P(P(Z * Z) x T)).

Definitions

ins = % i . (i : N | % i . (i : seq (N) | i k S))

cns = % t . (t : seq (F(seq (N1))) | {[]} u U i . (i : dom (t) | ins (i)[t(i)]))

T = cns [seq (T)]

tree (S) = U t . (t : T | t 3 S)

btree (S) = { t | t : tree (S)  ! n . (n : dom (t) y arity (t, n) : {0, 2}) }

Description

Trees that are modelised in B language are finite and decorated trees which have ordered

branches.

 A tree is composed of a finite set of nodes. If a branch links the A node to the B

node, then it is said that A is the father of B and that B is the son of A. A tree node

can have no more than one father. The only node that does not have a father is called

the root of the tree. A tree being never empty always has a root. A node can have

from 0 to n sons. This number is called the arity of the node. A node which as a null

arity is called a leaf. If a node has got one or several sons, then their order has a

signification, the branches leading to the sons are numbered from 1 to n.

 A node is represented mathematically by the sequence of the branch numbers linking

the root of the tree to the node. The root of the tree is represented by an empty

sequence.

 The tree is said to be decorated because an element of a given set S is associated

with each of its nodes.

 tree(S) is the set of trees decorated with elements of the S set. An element of this set

is a total function of a finite set of nodes towards an S set. Each node is represented

by the sequence of branches leading to the node from the root of the tree. A node

branch is identified by an element of N1.

 btree(S) is the set of binary trees decorated with elements of the S set. A binary tree

is a tree for which the arity of each node is equal to 0 or to 2. A node of a binary tree

is therefore either a leaf, or a node with two branches which are called right branch

and left branch.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

74

Example

The graphic representations of the trees given below use the following convention. A

circle which contains the value associated with the node represents a node. Arrows

represent the branches from the father to the son, numbered from 1 to n.

Let S be the following enumerated set : S = { a, b, c, d, e}

The A tree is an element of the tree(S) :

A = { [] m c,

 [1] m d,

 [1, 1] m e,

 [1, 2] m a,

 [2] m a,

 [3] m c,

 [3, 1] m d,

 [3, 1, 1] m e,

 [3, 1, 2] m d,

 [3, 1, 3] m c}

The B tree is an element of betree(S) :

B = { [] m a,

 [1] m b,

 [1, 1] m c,

 [1, 2] m d,

 [2] m a,

 [2, 1] m d,

 [2, 2] m e,

 [2, 2, 1] m b,

 [2, 2, 2] m a}

c

d

e
a

a

c

d

e
d

c

1

2

3

1
1

1
2

2

3

a

b

c
d

d

a

e

b a

1

2

2

1
1

1 2

2

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

75

5.21 Tree Expressions

Operator

const constructor

top root

sons sons

prefix prefixed flattening

postfix postfixed flattening

sizet size

mirror symmetry

Syntax

Tree_constructor ::= “const” “(“ Expression “,“ Expression “)”

Tree_root ::= “top” “(“ Expression “)”

Tree_sons ::= “sons” “(“ Expression “)”

Prefixed_flattening ::= “prefix” “(“ Expression “)”

Postfixed_flattening ::= “postfix” “(“ Expression “)”

Tree_size ::= “sizet” “(“ Expression “)”

Tree_symmetry ::= “mirror” “(“ Expression “)”

Typing Rules

In the expressions const(x,q), top(t), sounds(t), prefix(t), postfix(t), sizet(t), mirror(t), t must be a

tree of type P(P(Z * Z) * T), x must be of type T and q must be a sequence of trees of type

P(Z x P(P(Z * Z)* T)). The type of the expressions const(x,q) and mirror(t) is P(P(Z * Z)* T).

The type of top(t) is T. The type of sons(t) is P(Z x P(P(Z * Z)* T)). The type of the

expressions prefix(t,n) and postfix (t,n,i) is P(Z * T).

Restriction

1. In the expression const(x), x must be a couple formed by two elements separated by a

comma.

Proper Definition

Expression Well defineness condition

const(x, q) x : S & q : seq(tree(S))

top(t)

sons(t)

prefix(t)

postfix(t)

sizet(t)

mirror(t)

t : tree(S)

Definitions

const (x, q) = { [] m x } u U i . (i : dom (q) | ins (i)
 -1

 ; q(i))

top = const
-1

 ; prj1 (S, seq (tree (S)))

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

76

sons = const
 -1

 ; prj2 (S, seq (tree (S)))

prefix (t) = prefix (t) k conc (sons (t) ; prefix)

postfix (t) = conc (sons (t) ; postfix) j top (t)

sizet (t) = succ (sum (sons (t) ; sizet))

mirror (t) = const (top (t), rev (sons (t) ; mirror))

Description

Let S be a set, let t be a tree decorated with elements of S, let x be an element of S and let

T an element of seq (seq (N1) 2 S)) ,

 const(x,q) represents the tree whose root is associated with x and whose sons are the

elements of the sequence q.

 top (t) represents the value associated to the root of the t tree,

 sons(t) represents the sequence of sons of the root of the t tree.

 prefix(t) represents the prefixed flattening of the elements of S borne by the t tree, in a

sequence. This sequence can be defined in a recursive way. If t is a leaf, prefix(t) is

the sequence containing the value associated with the leaf node. Otherwise prefix(t)

can be obtained by concatenating the sequence containing the value associated with

the root of t, and the prefixed sequences of each son of the root of t, taken in order.

 postfix(t) represents the postfixed flattening of the elements of S borne by the t tree, in

a sequence. This sequence can be defined in a recursive way. If t is a leaf, postfix(t) is

the sequence containing the value associated with the leaf node. Otherwise postfix(t)

can be obtained by and the postfixed sequences of each son of the root of t, taken in

order, and concatenating the sequence containing the value associated with the root

of t.

 sizet(t) represents the size of the t tree. It is the number of nodes of t. This expression

can be defined in a recursive way,

 mirror (t) represents the tree which is symmetrical to t. It is the tree which is built

from t by reverting for each node the order of the sons of the node.

Examples

Let S be the following enumerated set : S = { a, b, c, d, e }

Let A1, A2, A3 be trees bearing elements of S :

A1 = { [] m d, [1] m e, [2] m a }

A2 = { [] m a }

A3 = { [] m c, [1] m d, [1, 1] m e,

 [1, 2] m d, [1, 3] m c }

A = const (c, [A1, A2, A3])

Then :

A = { [] m c,

 [1] m d, [1, 1] m e, [1, 2] m a,

 [2] m a,

 [3] m c, [3, 1] m d, [3, 1, 1] m e, [3, 1, 2] m d, [3, 1, 3] m c }

c

d

e
a

a

c

d

e
d

c

1

2

3

1
1

1
2

2

3

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

77

top (A) = c

sons (A) = [A1, A2, A3]

prefix (A) = [c, d, e, a, a, c, d, e, d, c]

postfix (A) = [e, a, d, a, e, d, c, d, c, c]

sizet (A) = 10

mirror (A) = { [] m c,

 [1] m c, [1, 1] m d, [1, 1, 1] m c, [1, 1, 2] m d, [1, 1, 3] m e,

 [2] m a,

 [3] m d, [3, 1] m a, [3, 2] m e }

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

78

5.22 Tree nodes expressions

Operator

rank rank of a node

father father of a node

son son of a node

subtree subtree

arity arity of a node

Syntax

Node_rank ::= “rank” “(“ Expression “,” Expression “)”

Node_father ::= “father” “(“ Expression “,” Expression “)”

Node_son ::= “son” “(“ Expression “,” Expression “,” Expression “)”

Node_subtree ::= “subtree” “(“ Expression “,” Expression “)”

Node_arity ::= “arity” “(“ Expression “,” Expression “)”

Typing rules

In the expressions rank(t,n), father(t,n), son(t,n,i), subtree (t,n) , arity (t,n), t must be a tree of type

P(P(Z * Z)* T), n must be a sequence of type P(Z * Z) and i must be of type Z. The type of

the expressions rank(t,n) and arity (t,n) is the integer type Z. The type of the expressions

father(t,n), son(t,n,i) is P(Z* Z). The type of subtree (t,n) is P(P(Z * Z)* T)

Restrictions

1. In the expressions rank (x) , father(x), subtree(x), and arity(x), x must be a couple made up of

two elements separated by a comma.

2. In the expression son(x), x must be a list of three elements separated by commas.

Well defineness

Expression Well defineness condition

rank(t, n) t : tree(S) & n : dom(t) – { [] }

father(t, n) t : tree(S) & n : dom(t) – { [] }

son(t, n, i) t : tree(S) & n j i : dom(t)

subtree(t, n) t : tree(S) & n : dom(t)

arity(t, n) t : tree(S) & n : dom(t)

Definitions

rank (t, n) = last (n)

father (t, n) = front (n)

son (t, n, i) = n j i

subtree (t, n) = cat (n) ; t

arity (t, n) = size (sons (subtree (t, n)))

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

79

Description

Let S be a set, let t be a tree decorated with elements of S, let n and m be the nodes of t,

(in the form of a sequence of branch numbers describing the path to the node from the

root). The node m must be different from the root of the tree. Finally, let i be one of the

branches starting at n.

 rank(t, m) represents the rank of the branch linking the father of m to m.

 father(t, n) represents the father of the node n in the tree t,

 son(t, n, i) represents the son of rank i of the node n of the tree t,

 subtree(t; n) represents the subtree of the tree t whose root is the node n.

 arity(t, n) represents the arity of the node n in the tree t, that is to say, the number of

sons of n.

Examples

Let S be the following enumerated set : S = { a, b, c, d, e }

Let A be the following tree bearing items of S :

A = { [] m c,

 [1] m d, [1, 1] m e, [1, 2] m a,

 [2] m a,

 [3] m c, [3, 1] m d, [3, 1, 1] m e,

 [3, 1, 2] m d, [3, 1, 3] m c }

Then

rank (A, [3, 1, 2]) = 2

father (A [3, 1, 2]) = [3, 1]

son (A, [3, 1], 2) = [3, 1, 2]

subtree (A, [3, 1]) = { [] m d, [1] m e, [2] m d, [3] m c }

arity (A, [1]) = 2

c

d

e
a

a

c

d

e
d

c

1

2

3

1
1

1
2

2

3

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

80

5.23 Binary Tree expressions

Operator

bin Binary tree in extension

left Left subtree

right Right subtree

infix Infixed flattening

Syntax

Extensive_binary_tree ::= “bin” “(“ Expression [“,” Expression ”,” Expression] ”)”

Left_subtree ::= “left” “(“ Expression “)”

Right_subtree ::= “right” “(“ Expression “)”

Infixed_flattening ::= “infix” “(“ Expression “)”

Typing Rules

In the expressions bin(x), bin(l,x,r), left (t), right(t), infix(t), x is of type T, l and r must be trees

of type P(P(Z* Z) * T), t must be a tree of type P(P(Z * Z) * T). The type of the

expressions bin(x), bin(l, x, r), left(t), and right(t) is P(P(Z * Z) * T). The type of infix(t) is P(Z *

T)

Restrictions

1. In the expressions rank(x), father (x), subtree(x) and arity (x) , x must be a couple formed

by two elements separated by a comma.

Well defineness

Expression Well defineness condition

bin(x) x : S

bin(l, x, r) x : S & l : btree(S) & r : btree(S)

left(t) t : btree(S) & sons(t) d []

right(t) t : btree(S) & sons(t) d []

infixt(t) t : btree(S)

Definitions

bin (x) = const (x, [])

bin (g, x, d) = const (x, [g, d])

left (t) = first (sons (t))

right (t) = last (sons (t))

infix (bin (x)) = [x]

infix (bin (g, x, d)) = infix (g)) [x]) infix (d)

Description

Since binary trees are trees (refer to section 5.20 Tree Sets), all the tree expressions and

the expressions of tree nodes from the preceding sections can be applied to binary trees.

The expressions described below are specific to binary trees.

Expressions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

81

Let S be a set, let r be an element of S, let l, r, t and u be binary trees decorated with

elements of S, and where t is not a leaf.

 bin(x) represents the binary tree composed of a single node bearing the value x

 bin(l,x,r) represents the binary tree whose root bears the value x, and whose root’s left

and right sons are the trees l and r,

 left(t) represents the left sub-tree of the t tree.

 right(t) represents the right sub-tree of the t tree.

 infix(u) represents the infixed flattening in a sequence of the elements of S borne by

the t tree. This sequence can be defined in a recursive way. If t is a leaf, infix(t) is the

sequence containing the value associated to the leaf node. Otherwise infix(t) can be

obtained by concatenating the infixed sequence of the left sub-tree of t, to the

sequence containing the value associated with the root of t, and to the infixed

sequence of the right sub-tree of t.

Examples

Let S be the following enumerated set : S = { a, b, c, d, e }

Let B be the following tree bearing items of S :

B = { [] m a,

 [1] m b,

 [1, 1] m c,

 [1, 2] m d,

 [2] m a,

 [2, 1] m d,

 [2, 2] m e,

 [2, 2, 1] m b,

 [2, 2, 2] m a}

B = bin (bin (bin (c), b, bin (d)),

 a,

 bin (bin (d), a, bin (bin (b), e, bin (a))))

left (B) = { [] m b, [1] m c, [2] m d }

right (B) = { [] m a, [1] m d, [2] m e, [2, 1] m b, [2, 2] m a }

 infix (B) = [c, b, d, a, d, a, b, e, a]

a

b

c
d

d

a

e

b a

1

2

2

1
1

1 2

2

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

83

6. SUBSTITUTIONS

Syntax

The syntax of generalized substitutions is defined below:

Substitution ::=
 Block_substitution
 | Identity_substitution
 | Becomes_equal_substitution
 | Precondition_substitution
 | Assertion_substitution
 | Substitution_limited_choice
 | If_substitution
 | Select_substitution
 | Case_substitution
 | Any_substitution
 | Let_substitution
 | Becomes_elt_substitution
 | Becomes_such_that_substitution
 | Var_substitution
 | Substitution_call

 | Simultaneous_substitution

 | While_substitution

Description

The substitutions are mathematical notations defined as predicate transformers.

Let S be a substitution and P a predicate. Then, the notation:

 [S] P (read as “substitution S establishes predicate P”)

represents the predicate obtained after transformation of P by substitution S. The

following vocabulary is also used to designate this transformation: reference is made to

the establishment by substitution S of postcondition P. Reference is also made to the

application of substitution S to P. The substitutions allow modeling the dynamic aspect

of B modules: their initialization as well as operations, as they allow establishing how

the properties of module data are transformed by these operations.

Example

Here is a simple form of the “becomes equal” substitution. Let x and y be integer

variables, then:

 [x := 3] (y + x < 0)

refers to the predicate obtained after replacement in predicate y + x < 0 of all free

occurrences of variable x by the expression 3. The following predicate will then be

obtained:

 y + 3 < 0

Therefore the application of this “becomes equal” substitution does in fact correspond

to the application of a substitution in that the value of x in the predicate y + x < 0 is

replaced by 3.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

84

Generalized substitutions

The generalized substitution language describes the set of substitutions that may be used

in B language. Each generalized substitution is defined by specifying what the predicate

obtained is after application of the substitution to a given predicate.

In the following chapters, a detailed description is provided of the generalized

substitutions. Here is the list:

BEGIN block substitution

skip identity substitution

:= becomes equal to substitution

:() becomes such that substitution

: becomes element of substitution

PRE precondition substitution

ASSERT assertion substitution

CHOICE bounded choice substitution

IF IF Conditional Substitution

SELECT conditional bounded choice substitution

CASE condition by case substitution

ANY unbounded choice substitution

LET local definition substitution

VAR local variable substitution

; sequencing substitution

WHILE while loop substitution

 operation call substitution

|| simultaneously substitution

Using substitutions

Generalized substitutions are used in B language to describe the core of the initialization

and of the operations on a component (refer to 7.22 The INITIALISATION and 7.23 The

OPERATIONS). The mechanism for transforming a predicate with a substitution enables

systematically generating the proof obligations relating to initialization and operations.

For example, so that an abstract machine can be semantically correct, it is necessary to

prove that each machine operation preserves the invariant. To do this, a proof obligation

is generated with as assumption (among others) the machine invariant and as goal, the

predicate obtained after transforming the invariant by the substitution that defines the

operation. In the same way, proof obligations are generated to demonstrate that the

initialization establishes the invariant and that the specification of an operation is

preserved through refinement.

Properties of substitutions

Generalized substitutions have certain characteristics that are defined below:

Non determinism

A substitution has non deterministic behavior if it describes a number of possible

behaviors without specifying which will in fact be chosen.

In B language, substitutions of machines and refinements may be non deterministic. The

non determinism decreases with refinement. The implementation substitutions must be

deterministic.

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

85

In the sections below, generalized substitutions are presented one after another. You are

given for each substitution : its name, the type of components where it may be used, its

syntax, and optionally its typing and scopes, its description and an example.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

86

6.1 Block substitution

Syntax

Block_substitution ::= "BEGIN" Substitution "END"

Definition

Let S be a substitution and P a predicate, then :

 BEGIN S END = S

Description

The block substitution is used to bracket substitutions performed in sequence or in

parallel.

Examples

BEGIN

 x1 := x1 + 1 ;

 y1 := x1
2

END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

87

6.2 Identical substitution

Syntax

Identity_substitution ::= "skip"

Definition

Let P be a predicate, then:

[skip] P  P

Description

The identity (skip) substitution takes no action. It does not change the predicate that it is

applied to. The identity substitution is especially useful for showing that some branches

in an IF, CASE or SELECT substitution perform no action.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

88

6.3 Becomes Equal Substitution

Syntax

Becomes_equal_substitution ::=
 Ident

+"."
 ":=" Expression

+","

 | Ident "(" Expression
+","

 ")" ":=" Expression

 | Ident ("’" Ident)
+
 ":=" Expression

Definitions

1. Let x be a variable, E an expression and P a predicate, then :

 [x := E] P

is the predicate obtained by replacing all of the free occurrences of x in P with E.

2. Let x and y two variables, E and F expressions of the same type as x and y, and P a

predicate. Let z an intermediate variables non-free in x, y, E, F and P. Then:

 [x,y := E,F]P  [z := F][x :=E][y :=z] P

The construction of a multiple “becomes equal” substitution for a list of variables

is then defined iteratively.

3. Let fct be a function, E1 and E2 expressions and P a predicate. The expression E1

must belong to the fct domain. Then:

 [fct(E1) := E2]P  [fct := fct +{E1mE2}]P

is the predicate obtained by replacing all of the free occurrences of fct in R with fct

overwritten by {E1mE2}.

4. Let n be an integer > 0 and i an integer : 1..n. Let rc be a record data with type

struct (Ident1 : T1, …, Identn : Tn), y an expression and P a predicate. Then:

 [rc’Identi := y]P  [rc := rec (Ident1 : rc’Ident1, …, Identi : y, ..., Identn : rc’Identn)]P

 This definition can be extended to nested record fields. For example, let rc a data

record with type struct (c1
1
 : T1

1
, …, ci

1
 : struct (c1

2
 : T1

2
, …, cj

2
 : Tj

2
, cm

2
 : Tm

2
), ..., cn

1
 : Tn

1
), y

an expression and P a predicate. Then:

 [rc’ci
1
’cj

2
 := y]P  [rc := rec (c1

1
 : rc’c1

1
, …,

 ci
1
 : rec (c1

2
 : rc’ci

1
’c1

2
, …, cj

2
 : y, ..., cm

2
 : rc’ci

1
’cm

2
), ...,

 cn
1
 : rc’cn

1
)]P

Typing rule

In the expression x1 := E1, x1 and E1 must be of the same type t.

In the expression x1,.., xn := E1,...,Em, (x1,.., xn) and E1,...,Em must be of the same type

t1×..×tn.

In the expression f (x1, …, xn) := e, f must be of the type P(T1 * … * Tn * T0). Then, each xi

must be of the type Ti and e must be of the type T0.

In the expression rc’Identi := y, rc must be of the type struct (Ident1 : T1, …, Identn : Tn). Then, y

must be of the type Ti. This rule can be extended to embedded record fields. In the case

of two embedded levels, this rule yields : in the substitution rc’ci
1
’cj

2
 := y, rc must be of

the type struct (c1
1
 : T1

1
, …, ci

1
 : struct (c1

2
 : T1

2
, …, cj

2
 : Tj

2
, cm

2
 : Tm

2
), ..., cn

1
 : Tn

1
). Then, y must be

of the type Tj
2.

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

89

Restrictions

1. In a “becomes equal” substitution on a list of variables, the variables must differ two

by two.

2. In a “becomes equal” substitution on a list of variables, the number of expressions

on the right hand side must be the same as the number of variables.

3. Each variable modified by a “becomes equal” substitution must be accessible in

write mode.

Description

The “becomes equal” substitution is used to replace a variable with an expression. It is

defined in a number of forms:

1. “becomes equal” substitution for a variable

Applying the x := E substitution replaces the non-free occurrences of variable x with

expression E.

2. “becomes equal” substitution for a list of variables

The multiple “becomes equal” substitution is then defined for a list of variables. This

kind of multiple substitution corresponds in semantically to a list of single “becomes

equal” substitutions performed in parallel.

3. “becomes equal” substitution for a function element

Then the “becomes equal” substitution is defined for a function element is an

abbreviation to replace one element of the function with an expression. The fct (x) := y

notation in fact refers to the “becomes equal” substitution of fct by itself, overwritten for

the x index level element by the value of expression y.

3. “becomes equal” substitution for a record

The “becomes equal” substitution for a record field is the abbreviation for the

replacement of a record variable field by an expression.

Examples

x2 := x1 + 1 ;

tab1 := {(0 m 3), (1 m 1), (2 m -7)} ;

tab1 (1) := 12 ;

tab2 := tab3 ;

y1, y2, y3 := 0, 0, 0 ;

z1, z2 := z2, z1 ;

tab4 (x1 + 2) := 1 ;

rc’c2 := FALSE ;

rdv’Date’Day := 13

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

90

6.4 Precondition Substitution

Syntax

Precondition_substitution ::= "PRE" Predicate "THEN" Substitution "END"

Definition

Let P and R be predicates and S a substitution.

[PRE P THEN S END] R  P  [S] R

Description

Precondition substitution is used to set the preconditions required before calling an

operation.

The proof obligation for preserving the invariant I of an operation defined by a

precondition substitution PRE P THEN S END is as follows:

 I  P  [S] I

When an operation with a PRE P THEN S END precondition is called, the application of

the precondition substitution corresponds to the precondition P and to the application of

substitution S. If the precondition is not proved, then the substitution does not end. In

other words, the performance described by a substitution with precondition is

guaranteed only if the usage context of the use of the precondition is true.

It is necessary to distinguish the substitution precondition for the conditional

substitution IF. The first is only usable if the predicate is valid, whereas the second is

always performed, but its result depends on the validity of a predicate.

Example

PRE

 x1  NAT1

THEN

 x1 := x1 - 1

END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

91

6.5 Assertion Substitution

Syntax

Assertion_substitution ::= "ASSERT" Predicate "THEN" Substitution "END"

Definition

Let P and R be predicates and S a substitution.

[ASSERT P THEN S END] R  P  (P  [S] R)

Description

The assertion substitution ASSERT P THEN S END enables applying the substitution S

under the assertion that the predicate P is true. This substitution is very close to the

precondition substitution. Like for the precondition, if predicate P is not established,

then the substitution fails. However, it is useful as it sets the assumption P for applying

the substitution S, as well as for the substitutions that follow S until the end of the body

of the operation or of the initialization in which it is used.

The role of the precondition and assertion substitutions differs. The primary purpose of

a precondition is to set a type and to express properties relating to the input parameters

of an operation, while an assertion substitution is used to provide assumptions for an

operation that may ease the task of proving the operation.

The assertion substitution may be useful when proving a refinement of an operation

containing conditional structures. If the operation and the refined operation both contain

IF substitutions with equivalent conditions, then indicating this equivalence in an

assertion substitution leads to immediate demonstration of the proof obligations of

cross-branches refinement (cases where is considered the refinement of a substitution

branch of the abstraction with condition P by a substitution branch of the refinement

with a condition contradicting P). On the other hand, it is necessary to establish the

assertion.

Examples

ASSERT

 x1 < 5  y2 = 0

THEN

 x1 := x1 - 5

END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

92

6.6 Bounded choice Substitution

Syntax

Substitution_limited_choice ::= "CHOICE" Substitution ("OR" Substitution)* "END"

Definition

Let S1, ..., Sn be substitutions (with n2) and P a predicate. Then the CHOICE substitution

is defined by:

[CHOICE S1 OR ... OR Sn END] P  [S1] P  ...  [Sn] P

Description

The bounded choice substitution enables defining a finite number of possible behaviors

without specifying which will in fact be implemented. It therefore defines a non

deterministic behavior.

Examples

CHOICE

 x1 := x1 + 1

OR

 x1 := x1 - 1
END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

93

6.7 IF conditional substitution

Syntax

If_substitution ::=
 "IF" Predicate "THEN" Substitution
 ["ELSIF" Predicate "THEN" Substitution]*
 ["ELSE" Substitution]
 "END"

Definition

Let P1, P2, ..., Pn and R be predicates (with n1) and let S1, S2, ..., Sn and T be

substitutions, then :

1. [IF P1 THEN S1 ELSE T END]R  (P1  [S1]R)  (¬P1  [T]R)

2. IF P1 THEN S1 END  IF P THEN S ELSE skip END

3. [IF P1 THEN S1 ELSIF P2 THEN S2 ... ELSIF Pn THEN Sn ELSE T END]R 

 (P1  [S1]R)  ((¬P1  P2)  [S2]R)  ...  ((¬P1  ...  ¬Pn-1  Pn) [Sn]R) 

 ((¬P1  ...  ¬Pn) [T]R)

4. IF P1 THEN S1 ELSIF P2 THEN S2 ... ELSIF Pn THEN Sn END 

 IF P1 THEN S1 ELSIF P2 THEN S2 ... ELSIF Pn THEN Sn ELSE skip END

Description

The conditional substitution IF is used to define, for a given program, a number of

possible behaviors, depending on the validity of one or more predicates. The behavior

defined by the conditional substitution IF is a deterministic one.

The IF conditional substitution is defined in various forms:

1. IF P1 THEN S1 ELSE T END

If predicate P1 is true then the substitution S1 applies, else substitution T applies.

2. IF P1 THEN S1 END

The ELSE branch of an IF substitution is optional. If it is missing, by default it

represents the identity substitution.

3. IF P1 THEN S1 ELSIF P2 THEN S2 ... ELSIF Pn THEN Sn ELSE T END

The presence of an ELSIF branch in an IF substitution is equivalent to nesting

another IF substitution in the ELSE branch of the first IF. It is possible to have any

number of ELSIF branches in the same IF substitution.

4. IF P1 THEN S1 ELSIF P2 THEN S2 ... ELSIF Pn THEN Sn END

When an IF substitution has any number of ELSIF branches but no explicit ELSE

branch, it is defined by default with an ELSE branch that contains the null

substitution.

Examples

IF x1  { 2, 4, 8 } THEN

 x1 := x1 / 2

END ;

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

94

IF y1 + z1 < 0 THEN

 y1 := - z1

ELSE

 y1 := 0

END ;

IF x0 = 0 THEN

 sign := 0

ELSIF x0 > 0 THEN

 sign := 1

ELSE

 sign := -1
END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

95

6.8 Conditional Bounded choice Substitution

Syntax

Select_substitution ::=
 "SELECT" Predicate "THEN" Substitution
 ("WHEN" Predicate "THEN" Substitution)

*

 ["ELSE" Substitution]
 "END"

Definition

Let P1, P2, ..., Pn and R be predicates, with nq1. Let S1, S2, ..., Sn and T be substitutions,

then :

1. [SELECT P1 THEN S1 WHEN P2 THEN S2 ... WHEN Pn THEN Sn END] R 

 (P1  [S1] R)  (P2  [S2] R)  ...  (Pn  [Sn] R)

2. [SELECT P1 THEN S1 WHEN P2 THEN S2 ... WHEN Pn THEN Sn ELSE T END] R 

 (P1  [S1] R)  (P2  [S2] R)  ...  (Pn  [Sn] R)  ((¬ P1  ¬ P2  ...  ¬ Pn) 

[T] R)

3. [SELECT P1 THEN S1 END] R  P1 y [S1] R

4. [SELECT P1 THEN S1 ELSE T END] R  P1 y [S1] R  (¬ P1 y [T] R)

Description

The SELECT substitution is used to define for a given program, various possible

behaviors depending on the validity of predicates. Each branch in the SELECT

substitution describes one of these cases. It comprises a predicate and a substitution. If

the predicate is true, then the substitution may apply. If all of the predicates are false and

the SELECT substitution ends with an ELSE branch, then the substitution of the ELSE

branch applies.

If the predicates for different branches are not mutually exclusive, a number of

behaviors are possible and there is no specification of the one that will in fact be

implemented. In this case the behavior of the SELECT substitution is non deterministic.

In addition, if none of the predicates is valid and if the ELSE branch does not exist, then

the substitution is not feasible.

Example

SELECT

 x  0 THEN

 y := x
2

WHEN

 x  0 THEN

 y := - x
2

END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

96

6.9 Case Conditional Substitution

Syntax

Case_substitution ::=
 "CASE" Expression "OF"
 "EITHER" Simple_term

+","
 "THEN" Substitution

 ("OR" Simple_term
+","

 "THEN" Substitution)
+

 ["ELSE" Substitution]
 "END"
 "END"

Definitions

Let E be an expression, L1, L2, ..., Ln lists of literal constants, with n2. Let S1, S2, ..., Sn

and T be substitutions, then:

1. CASE E OF EITHER L1 THEN S1 OR L2 THEN S2 ... OR Ln THEN Sn END 

SELECT E  {L1} THEN S1 OR E  {L2} THEN S2 OR ... OR E  {Ln} THEN Sn ELSE skip

END

2. CASE E OF EITHER L1 THEN S1 OR L2 THEN S2 ... OR Ln THEN Sn ELSE T END 

SELECT E  {L1} THEN S1 OR E  {L2} THEN S2 OR ... OR E  {Ln} THEN Sn ELSE T END

Typing rule

In a CASE substitution, the expression as well as the lists of branch constants EITHER and

OR must all be of the same simple type: integer type, boolean type, deferred type or

enumarated type.

Description

The CASE substitution is used to define for a program, various possible behaviors

depending on the value of an expression. Each EITHER and OR branch is made up of a

non empty list of constants. The values of constants in the set of branches must be

distinct two by two. If the value of the expression belongs to one of the branches, then

the substitution of this branch is executed. If not, the substitution in the ELSE branch is

applied, if this latter branch is absent, it will by default perform the identity substitution.

The behavior of this substitution is therefore deterministic and always feasible.

Example

CASE x / 10 OF

 EITHER 0 THEN

 x := 0

 OR 2, 4, 8 THEN

 x := 1

 OR 3, 9 THEN

 x := 2

 ELSE

 x := -1
 END
END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

97

6.10 Unbounded choice Substitution

Syntax

Any_substitution ::= "ANY" Ident
+","

 "WHERE" Predicate "THEN" Substitution "END"

Definition

Let X be a non empty list of variables that are distinct two by two, S substitution and P

and R two predicates, then :

[ANY X WHERE P THEN S END] R  X . (P  [S]R)

Scope

In an ANY X WHERE P THEN S END substitution, the scope of the list of identifiers X is the

predicate P and the substitution S, and they are accessible in read-only mode in

substitution S.

Restriction

 The substitution ANY is not an implementation substitution

 The identifiers introduced by ANY must be distinct two by two.

 The variables X introduced by the ANY X WHERE P THEN S END substitution must

be typed by an abstract data typing predicate (refer to 3.1 Typing foundations),

located in a list of conjunctions at the highest level of syntax analysis in P. These

variables cannot be used in P before they have been typed.

Description

The ANY L WHERE P THEN S END substitution allows the use in the substitution S of the

abstract data declared in list L and which verify the predicate P.

The data in list L must be distinct two by two. The predicate P must start by typing the L

data used in P or in S using the abstract data typing predicates. If a number of values

satisfy predicate P, the substitution does not specify which one is effectively chosen. It

then defines a non deterministic behavior. The abstract data from list L will then be

accessible in read mode, but not in write mode in S, as these are non local variables but

abstract data defined by the predicate P.

Example

ANY r1, r2 WHERE

 r1  NAT 

 r2  NAT 

 r1
2
 + r2

2
 = 25

THEN

 SumR := r1 + r2

END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

98

6.11 Local Definition Substitution

Syntax

Let_substitution ::=
 "LET" Ident

+","
 "BE"

 (Ident "=" Expression)
+""

 "IN" Substitution "END"

Definition

Let x1, ..., xn be a non empty list of identifiers that are distinct two by two, E1, ..., En a list

of expressions, S a substitution, then:

LET x1, ..., xn BE x1 = E1  ...  xn = En IN S END 

 ANY x1, ..., xn WHERE x1 = E1  ...  xn = En IN S END

Restrictions

 The substitution LET is not an implementation substitution

 The identifiers introduced in a given substitution LET must be distinct two by two.

 Each identifier xi introduced in a substitution LET L BE P IN S END must be

defined once and only once with an abstract data typing predicate.

 Only identifiers xi introduced after the reserved keyword LET can appear in the left

hand part of predicates introduced by the reserved keyword BE

Scope

In a LET L BE P IN S END substitution, the identifiers in list L are accessible in the left

hand part of the typed predicates that make up predicate P, but not in the expressions in

the right hand part and they are accessible in read-only mode in substitution S.

Description

The LET L BE P IN S END substitution introduces a list of abstract data L, the value of

which is given by predicate P and which can be used in read mode in substitution S.

The list L must be non empty. It comprises identifiers that are distinct two by two and

which establish the predicate P. This predicate comprises a list of conjunctions matching

xi = Ei where xi is an identifier in list L and where Ei is an expression. Each identifier xi

must be defined once and only once in P, its associated expression Ei must not use any

of the identifiers from L. To define identifiers that are dependent on other identifiers,

simply use two nested LET substitutions. The identifiers introduced by LET may be used

in read-only mode in substitution S.

Example

LET r1, r2 BE

 r1 = (Var1 + Var2) / 2 

 r2 = (Var1 - Var2) / 2

IN

 SumR := r1 + r2 ||

 DifferenceR := r1 - r2

END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

99

6.12 Becomes Element of Substitution

Operator

: Becomes element of

Syntax

Becomes_elt_substitution ::= (Ident
+"."

)
+","

 ":" Expression

Definition

Let E be an expression representing a set, X a list of modifiable non empty variables and

Y a list of intermediate variables with as many elements as X but not present in X and E.

Then :

X : E  ANY Y WHERE Y  E THEN X := Y END

Typing rule

In the x1 : E substitution, if x1 is a type t1 then E must be a P(t1) set type. In the

x1,...,xn : E substitution, if (x1,...,xn) is a Cartesian product type (t1...tn) then E must be a

P(t1...tn) set type.

Restrictions

 The substitution “Becomes element of” is not an implementation substitution

 The identifiers introduced in a substitution “Becomes an element of“ must be

distinct two by two.

Description

The “becomes an element of” substitution is used to replace variables with values that

belong to a set. The variables must be distinct two by two. If the set has several values,

the substitution does not specify which one is effectively chosen, it then defines a non

deterministic behavior.

Examples

i1 : INT ;

b1 : BOOL ;

x1 : -10 .. 10 ;

y1, y2 : {1, 3, 5}  NAT

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

100

6.13 Becomes such that Substitution

Operator

 :() Becomes such that

Syntax

Becomes_such_that_substitution ::= (Ident
+"."

)
+","

 ":" "(" Predicate ")"

Definition

Let P be a predicate, X a list of modifiable variables that are distinct two by two, Y a list

of intermediate variables with as many elements as X but that are not in X and P, then:

1. X :(P)  ANY Y WHERE [X := Y]P THEN X := Y END

With a variable y from X. The notation y$0 may be used in P. It represents the value of

variable y before the application of the “becomes such that” substitution. Then:

2. X :(P)  ANY Y WHERE [X, y$0 := Y, y]P THEN X := Y END

Restrictions

 The substitution “Becomes such that” is not an implementation substitution.

 Substitution variables X such as X :(P) must be accessible in write mode.

 In the expression X :(P), the variable list X must be typed in the predicate P with the

help of abstract data typing predicates located in a conjunction list at the highest

level of the syntax analysis of P .

Typing rule

In the expression X :(P), if x is a variable in the list X, then predicate P must type x if it is

not yet typed, using an abstract data typing predicate. This case may only occur when x

is a local variable declared in a VAR substitution or by an operation formal output

parameter.

Description

The “becomes such that” substitution is used to replace variables with values that

satisfy a given predicate. The variables must be distinct two by two. If a number of

values satisfy the predicate, the substitution does not specify which one will effectively

be chosen, its behavior will then be non deterministic.

The value prior to the substitution of a variable y from X may be referenced by y$0 in

predicate P. This possibility is a notational simplification that avoids introducing an

intermediate variable into an ANY substitution.

Examples

x : (x : INTEGER  x > -4  x < 4) ;

a, b : (a : INT  b : INT  a
2
 + b

2
 = 25) ;

y : (y : NAT  y$0 > y)

This last substitution can be written without using the $0 notation, as follows:

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

101

ANY y2 WHERE

 y2  Z  y > y2
THEN

 y := y2
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

102

6.14 Local Variable Substitution

Operator

VAR Local variable

Syntax

Var_substitution ::= "VAR" Ident
+","

 "IN" Substitution "END"

Definition

Let X be a list of variables that are distinct two by two, S a substitution and P a predicate,

then:

[VAR X IN S END]P  X.S[P]

Scope

In a VAR L IN S END substitution, the identifiers in the L list are accessible in read and in

write mode for substitution S.

Restrictions

 The substitution VAR is not an abstract machine substitution

 Variables introduced by a substitution VAR must be distinct two by two.

 In an implementation, local variables must be initialized before being read.

Description

The VAR L IN S END substitution introduces a non empty list of local variables L that are

distinct two by two. These local variables may be used in substitution S. They are typed

when they are first used in S (in the order of scanning S). The local variables must be

initialized before they are read. The keywords IN and END bracket the substitution S like

a BEGIN END block substitution.

Examples

VAR varLoc1, varLoc2 IN

 varLoc1 := x1 + 1 ;

 varLoc2 := 2  varLoc1 ;

 x1 := varLoc2

END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

103

6.15 Sequencing Substitution

Operator

; Sequencing

Syntax

Sequence_substitution ::= Substitution ";" Substitution

Definition

Let S and T be substitutions and P a predicate, then:

[S ; T]P  [S][T]P

Which means that the predicate obtained by applying the sequence substitution S ; T on

predicate P is the predicate obtained by applying S to the result of the application of T on

P.

Restriction

1. The substitution “Sequencing” is not an abstract machine substitution.

Description

The sequencing substitution corresponds to the execution in sequence of two

substitutions.

Example

z := x ; x := y ; y := z

In the example above, the values of data items x and y are swapped.

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

105

6.16 Operation Call Substitution

Operator

 Operation call

Syntax

Substitution_call ::= [(Ident
+"."

)
+","

 ""] Ident
+"."

 ["(" Expression
+","

 ")"]

Definitions

1. Let op be an operation (non local or local) without an output parameter and

without an input parameter, defined by op = S, then the meaning of an op call is:

 [op]P  [S]P

2. Let op be an operation (non local or local) without an output parameter and with

input parameters, defined by op(X) = S where X is a list of identifiers that designate

the formal input parameters for op, and with E a list of expressions that represent

the effective input parameters for op, then the meaning of an op(E) call is:

 [op(E)]P  [X :=E][S]P

3. Let op be an operation (non local or local) with output parameters and no input

parameter, defined by Y op = S, where Y is a list of identifiers that refers to the

formal output parameters for op, and with R a list of identifiers, possibly renamed,

designating the effective output parameters from op, then the meaning of an R op

call is:

 [Rop]P  [S][R :=Y]P

4. If op is an operation (non local or local) with output parameters and with input

parameters, defined by Yop(X) = S, the meaning of an Rop(E) call is:

 [Rop(E)]P  [X :=E][S][R :=Y]P

Typing rule

In the op(E) and Rop(E) operation calls, E is a list of expressions whose type must be

identical to the type of the input parameters used for the op operation, defined in the

specification which declares this operation.

In the Rop and Rop(E) operation calls, R is a list of data names whose type must be

identical to the type of the output parameters from the op operation defined in the

specification which declares this operation.

Restriction

1. A variable must not be used several times as return parameter for a given operation.

For example, the operation call x,x op is forbidden

Description

The operation call substitution function is used to apply the substitution of an operation

(non local or local), by replacing the formal parameters with effective parameters.

Effective input parameters are expressions and effective output parameters are names

refering to data that can be modified.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

106

The operation call is defined in four different forms, depending on the presence of input

and output parameters.

Examples

op1 ;

op2 (x0 + 1, TRUE) ;

res1, res2  op3 ;

res, flag  op4 (x0)

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

107

6.17 While Loop Substitution

Syntax

While_substitution ::=
 "WHILE" Condition "DO" Instruction
 "INVARIANT" Predicate
 "VARIANT" Expression
 "END"

Definition

Let P be a predicate, S a substitution, I and R predicates and V an expression. If X

represents the list of free variables that appears in S and I and n is a fresh variable, i.e.

one that is not free in V, I, P and S, then :

[WHILE P DO S INVARIANT I VARIANT V END]R 

 I 

 X.(I  P  [S]I) 

 X.(I  V  N) 

 X.(I  P  [n := V][S](V < n))

 X.(I  P  R))

Typing rule

In a WHILE P DO S INVARIANT I VARIANT V END substitution, the variant V must be an

integer type.

Restriction

1. The substitution “Sequencing” is neither an abstract machine substition nor a

refinement substitution

Description

The WHILE substitution is used to perform a “while” loop . The WHILE P DO S

INVARIANT I VARIANT V END substitution performs the S instruction as long as

condition P remains true. A “while” loop must end after a finite number of iterations.

I is the invariant in the loop. It is a predicate that gives the properties of the variables

used in the loop. The loop invariant allows proving that at each step, the loop is possible

and that on the output, the result produced is available. In the loop invariant, it is

possible to designate the value of a variable y for the abstraction of the component using

notation y$0.

V is the loop variant. It is an integer expression used to prove that the “while” loop ends.

To do this, it is necessary to prove that V is a positive integer expression, that strictly

decreases at each iteration.

In the most general case, the WHILE substitution may be preceded, in sequence, by an

instruction that initialized the variables used in the loop. It will then take the form: T ;

WHILE P DO S INVARIANT I VARIANT V END where T is the initialization instruction.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

108

Examples

BEGIN

 varLoc := var1 ;

 cpt := 0

END ;

WHILE cpt < 5 DO

 varLoc := varLoc + 1 ;

 cpt := cpt + 1

INVARIANT

 cpt  NAT 

 cpt  5 

 varLoc  NAT 

 varLoc = var1 + cpt

VARIANT

 5 - cpt

END

Substitutions

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

109

6.18 Simultaneous Substitution

Operator

|| Simultaneous substitution

Syntax

Simultaneous_substitution ::= Substitution "||" Substitution

Definition

The simultaneous substitution is defined inductively from certain properties and in

relation to other language substitutions. Let S1, S2, S3 and T be substitutions, x and y of

variables, X a list of identifiers, E an expression, l1 and l2 lists of constants, P1, P2 and R

predicates, then:

Properties of the simultaneous substitution:

1. S1 || S2 = S2 || S1

2. S1 || (S2 || S3) = (S1 || S2) || S3

Defining the simultaneous “becomes equal” substitution:

3. x := E || y := F = x, y := E, F

4. [x := E || x := F] R e ! x' . ((x' = E  x' = F) y [x := x'] R)

 Simultaneous substitution behavior in relation to other substitutions:

5. skip || S = S

6. X :(P) || S = ANY Y WHERE [X := Y]P THEN X := Y || S END

7. X : E || S = ANY Y WHERE Y  E THEN X := Y || S END

8. CHOICE S OR T END || U = CHOICE S || U OR T || U END

9. PRE P THEN S END || T = PRE P THEN S || T END

10. ASSERT P THEN S END || T = ASSERT P THEN S || T END

11. BEGIN S END || T = BEGIN S || T END

12. If no elementary variable from X is free in T, then:

ANY X WHERE P THEN S END || T = ANY X WHERE P THEN S || T END

13. If no elementary variable from X is free in T, then:

SELECT X THEN S1 WHEN P2 THEN S2 END || T = SELECT P1 THEN S1 || T WHEN P2

THEN S2 || T END

14. If no elementary variable from X is free in T, then:

LET X BE P1 IN S1 END || T = LET X BE P1 IN S1 || T END

15. IF P1 THEN S1 ELSE S2 END || T = IF P1 THEN S1 || T ELSE S2 || T END

16. CASE E OF EITHER l1 THEN S1 OR l2 THEN S2 END =

 CASE E OF EITHER l1 THEN S1 || T OR l2 THEN S2 || T END

17. If no elementary variable from X is free in T, then:

VAR X THEN S END || T = VAR X THEN S || T END

Restrictions

1. The simultaneous substitution is not an implementation substitution

2. Let SX and TY be two substitutions which modify the variable series X and Y. Then, it

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

110

is necessary that the variable list X and Y are differ two by two.

3. It is forbidden to call simultaneously two write operations of the same included

machine instance. Indeed, even if each operation call preserves the invariant of the

included machine instance, it would be possible that two simultaneous operation

calls break this invariant.

4. In a local operation specification (see section 7.24, LOCAL_OPERATIONS Clause), it is

illegal to call two parallel operations for the same included machine instance.

Description

Simultaneous substitution corresponds to the simultaneous execution of two

substitutions. The simultaneous character shows that the substitutions must be able to

be performed independently of each other. Simultaneous substitution is commutative

and associative. It is not defined globally, but in relation to each of the other

substitutions in the language. The following special cases should be noted:

• A number of “becomes equal” substitution grouped in a simultaneous substitution

corresponding to one multiple “becomes equal” substitution that affects the set of

variables. The rules for multiple “becomes equal” substitution therefore also apply

when writing simultaneous substitutions. For this reason, it is illegal to use

parallel substitutions that modify the same variables.

• It is illegal to call two parallel operations of the same included machine instance,

for if these operations modify the same variables of the included machine

instance, then it would be possible to break its invariant.

Example

x := y ||

y := x

In the example above, the values of data items x and y are swaped.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

111

7. COMPONENTS

7.1 Abstract Machine

Syntax

Machine_abstract ::=
 "MACHINE" Header
 Clause_machine_abstract

*

 "END"

Clause_machine_abstract ::=
 Clause_constraints
 | Clause_sees
 | Clause_includes
 | Clause_promotes
 | Clause_extends
 | Clause_uses
 | Clause_sets
 | Clause_concrete_constants
 | Clause_abstract_constants
 | Clause_properties
 | Clause_concrete_variables
 | Clause_abstract_variables
 | Clause_invariant
 | Clause_assertions
 | Clause_initialization
 | Clause_operations

Description

An abstract machine is a component that defines in different clauses, data and its

properties as well as operations. An abstract machine is the specification of a B module.

It comprises a header and some clauses. The order of the clauses in a component is not

fixed. The description of clauses is given in the table below.

Clause Description

CONSTRAINTS Definition of the type and properties of formal scalar parameters

SEES List of instances of seen machines

INCLUDES List of instances of included machines

PROMOTES List of promoted operations of instances of included machines

EXTENDS List of instances of extended machines

USES List of instances of used machines

SETS List of deferred sets and definition of enumerated sets

CONCRETE_CONSTANTS List of concrete constants

ABSTRACT_CONSTANTS List of abstract constants

PROPERTIES Type and properties of machine constants

CONCRETE_VARIABLES List of concrete variables

ABSTRACT_VARIABLES List of abstract variables

INVARIANT Type and properties of variables

ASSERTIONS Definition of properties that are deduced from the invariant

INITIALISATION Initialization of variables

OPERATIONS List and definition of specific operations

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

112

Restrictions

1. A clause may only appear at most once in an abstract machine.

2. If one of the CONCRETE_CONSTANTS or ABSTRACT_CONSTANTS clauses is present,

then the PROPERTIES clause must be present.

3. If one of the CONCRETE_VARIABLES or ABSTRACT_VARIABLES clauses is present, then

the INVARIANT and INITIALISATION clauses must be present.

Use

An abstract machine may be referenced in the REFINES clause of a refinement, to declare

that the refinement refines this abstract machine or in the component visibility clauses,

(IMPORTS, SEES, INCLUDES, EXTENDS, or USES clauses), to indicate that the component

imports, sees, includes, extends, or uses an instance of this abstract machine.

Visibility tables
Let MA be an abstract machine. The visibility table below specifies the access mode for

each component of MA (data or operation), in the clauses of MA.

For example, we may observe that a concrete variable may be read in the INVARIANT and

ASSERTIONS clauses and may be read and written, i.e. modified in the clause

INITIALISATION clause or in an operation.

The term “specific operation” on a component refers to an operation whose body is

defined in the component, within the OPERATIONS clause.

 Clauses of MA

Components of MA

CONSTRAINTS Parameters in
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTIONS

INITIALISATION /
OPERATIONS

Formal parameters

read read Read read

Sets, enumerated set
elements,

concrete constants

read

read

Read

read

Non homonymous
abstract constants

 read read Read read

Non homonymous
concrete variables

 Read read/write

Non homonymous
abstract variables

 Read read/write

Specific
operations (not

promoted)

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

113

7.2 Header

Syntax

Header ::= Ident ["(" Ident
+","

 ")"]

Description

A component header defines the name of the component and the list of its parameters.

A component may be followed by a list of identifiers representing the formal component

parameters. The formal parameters of a component remain unchanged in the component

refinements. They are used to set the parameters of the different instances of the abstract

machine. A formal parameter may either be a deferred set that is a new scalar type (refer

to section 7.13 The SETS Clause), or a scalar (refer to 7.5 The CONSTRAINTS Clause).

Restrictions

1. The name of a component must be unique in the project.

2. The declaration of formal parameters must remain identical in all the components

of a module.

3. The name of set parameters must not comprise any lowercase character.

4. The name of scalar parameters must comprise at least one lowercase character.

Use

Let MA be a parametered abstract machine. On the inclusion or importing of an instance

of MA, the formal parameters of MA are instantiated by effective parameters. The

properties of the formal parameters of MA are declared in the abstract machine

CONSTRAINTS clause.

The formal parameters may be used in read mode, in the INVARIANT and ASSERTIONS,

INCLUDES clauses (as an effective parameter of the included abstract machine), as well as

in the INITIALISATION and OPERATIONS clauses.

It should be noted that the formal parameters cannot be used in the PROPERTIES clause.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

114

7.3 Refinement

Syntax

Refinement ::=
 "REFINEMENT" Header
 Clause_refines
 Clause_refinement

*

 "END"

Clause_refinement ::=
 Clause_sees
 | Clause_includes
 | Clause_promotes
 | Clause_extends
 | Clause_sets
 | Clause_concrete_constants
 | Clause_abstract_constants
 | Clause_properties
 | Clause_concrete_variables
 | Clause_abstract_variables
 | Clause_invariant
 | Clause_assertions
 | Clause_initialization
 | Clause_operations

Description

A refinement is a component that refines an abstract machine or another refinement

(refer to 8.2 B Module).

The USES and CONSTRAINTS clauses are illegal in a refinement.

Restrictions

1. A clause may only appear at most once in a refinement.

Use

A refinement may be used in a REFINES clause in another refinement, to declare that this

other refinement refines the first one.

Visibility tables
Let Mn be a refinement. The visibility table below specifies the access mode for each

constituent of Mn, in the clauses of Mn.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

115

 Clauses of Mn

Constituents of Mn

Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

Read Read Read

Sets, enumerated set
elements,

concrete constraints

Read

Read

Read

Read

Non homonymous
abstract constants

Read Read Read Read

Non homonymous
concrete variables

 Read Read/write

Non homonymous
abstract variables

 Read Read/write

Specific
operations (not

promoted)

Let Mn-1 be the component refined by Mn. The visibility table below specifies the access

mode for each constituent of Mn-1 disappearing in Mn, in the clauses of Mn. Here, only the

abstract data from Mn-1 and they disappearing in Mn are of interest as the other data is

preserved in Mn.

In the case of initialization and of operations, there is a difference between the visibility

in the assertion substitution predicates (refer to section 6.5 Assertion Substitution)

compared with the rest of the substitutions.

 Clauses of Mn Parameters of PROPERTIES INVARIANT / INITIALISATION / OPERATIONS

Constituents of Mn-1

INCLUDES
/EXTENDS

 ASSERTION Substitutions Predicates
of ASSERT

Abstract constants
that disappear in Mn

 read read read

Abstract variables
that disappear in Mn

 read read

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

116

7.4 Implementation

Syntax

Implementation ::=
 "IMPLEMENTATION" Header
 Clause_refines
 Clause_implementation

*

 "END"

Clause_implementation ::=
 Clause_sees
 | Clause_imports
 | Clause_promotes
 | Clause_extends_B0
 | Clause_sets
 | Clause_concrete_constants
 | Clause_properties
 | Clause_values
 | Clause_concrete_variables
 | Clause_invariant
 | Clause_assertions
 | Clause_initialization_B0
 | Clause_operations_B0

Description

An implementation is a component that constitutes the last refinement of an abstract

machine (refer to 8.2 B Module).

Two new clauses may appear in an implementation: the IMPORTS clause and the VALUES

clause. The IMPORTS clause creates modules concrete instances in a project. The VALUES

clause is used to assign a value to the deferred sets and to the concrete constants.

The EXTENDS clause corresponds to the IMPORTS clause in an implementation. In an

abstract machine or in a refinement, the EXTENDS clause corresponds to the INCLUDES

clause.

The INITIALISATION and OPERATIONS clause differ from an implementation and an abstract

machine or a refinement. In an implementation, these clauses are made up of concrete

expressions or substitutions (refer to section 7.24 LOCAL_OPERATIONS Clause).

The CONSTRAINTS, INCLUDES, USES, ABSTRACT_CONSTANTS and ABSTRACT_VARIABLES (or

VARIABLES) clauses are illegal in an implementation.

Restriction

1. A clause cannot appear more than once in an implementation.

Use

Visibility tables
Let Mn be an implementation. The visibility table below specifies the access mode for

each component of Mn, in the clauses of Mn. In the initialization and the operations, a

difference is made between the use of components in the non translated parts: the

variant and the invariant of the WHILE loop and the assertion of an ASSERT substitution

and in the translated parts: the rest of B0 instructions.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

117

 Clauses in Mn Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS

Constituents of Mn

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants and
invariants,

predicate ASSERT

Formal parameters

Read Read Read Read

Enumerated sets,
elements in

enumerated sets

Read

Read

Read

Read

Read

Read

Deferred sets,
concrete constants

Read Read Write Read Read Read

Concrete variables

 Read Read/Write Read

Specific
operations

Definitions

Read Read Read Read Read Read

Let Mn-1 be the abstraction of Mn. The visibility table below shows the access mode for

each component of Mn-1 that disappear in Mn, in the clauses of Mn.

 Clauses of Mn Parameters of PROPERTIES INVARIANT / INITIALISATION / OPERATIONS

Constituents of Mn-1

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants and
invariants,

predicate ASSERT

Abstract constants

 Read Read Read

Abstract variables

 Read Read

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

118

7.5 The CONSTRAINTS Clause

Syntax

Clause_constraints ::= "CONSTRAINTS" Predicate
+""

Description

The CONSTRAINTS clause is used to type the scalar parameters of the abstract machine

and to express complementary properties, also called constraints, that apply to these

parameters.

The abstract machine parameters are of two kinds:

• scalar parameters: the name of a scalar parameter is an identifier that must contain

at least one lowercase character. Its type may be Z, BOOL or a machine set

parameter (see below),

• set parameters: the name of a set parameter is an identifier that must not contain a

lowercase character. It represents a deferred set, equipotent to an interval of

integers. Set parameters form new types that may be used to type machine scalar

parameters.

Restrictions

1. Each abstract machine scalar parameter must be typed by a machine parameter

typing predicate (refer to section 3.1 Typing foundations) located at the first level

of a list of conjunctions.

2. Each scalar parameter must be typed prior to use (refer to section 3.1 Typing

foundations).

3. The set parameters do not require typing.

Use

Formal set parameters define new types like deferred sets or enumerated sets (refer to

section 7.13 The SETS), that take their name. The types of the different set parameters

are incompatible. It is therefore illegal, for example, to express that a set parameter is

contained in another one.

Example

In the example below, p1 is an integer parameter, p2 is a Boolean parameter, and p3 is a

parameter that belongs to the ENS1 set parameter. In addition, ENS1 and ENS2 are set

parameters.

MACHINE

 MA (p1, p2, p3, ENS1, ENS2)

CONSTRAINTS

 p1  INT 

 p2  BOOL 

 p1  ENS1

...

END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

119

7.6 The REFINES Clause

Syntax

Clause_refines ::= "REFINES" Ident

Description

The REFINES clause contains the name of the refined component (also called abstraction)

for the refinement.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

120

7.7 The IMPORTS Clause

Syntax

Clause_IMPORTS ::=

 IMPORTS ([Ident"."]Ident ["(" Instanciation_B0
+","

 ")"])+","

Instanciation_B0 :=
 Term
 | Number_set_B0 (refer to section 3.5)
 | BOOL

 | Interval (refer to section 5.7)

Description

The import link between an implementation and an abstract machine instance is a

composition link. The implementation creates the imported abstract machine instance to

use its data and operations to implement its own data and operations. The module of the

implementation is therefore the father of the imported module instance into the project

import graph (refer to section 8.3 IMPORTS link). This implementation is the only

implementation of the project that has the right to modify the imported machine instance

variables .

Restrictions

1. The IMPORTS clause identifiers must refer to abstract machines.

2. The renamed identifiers have no more than one renaming prefix.

3. Each machine name must be followed by an effective parameter list with the same

number of parameters than the imported machine.

4. If a concrete constant of a machine instance imported by an implementation is

homonymous to a concrete constant of the implementation, then both homonymous

constants refer to the same data and must be of the same type.

5. If a concrete variable of a machine instance imported by an implementation is

homonymous to a concrete variable of the implementation, then both homonymous

variables refer to the same data and must be of the same type.

6. A machine instance must not be imported more than once in a project (refer to 8.3

Rule n°1 on IMPORT links).

7. A complete project must contain one, and only one, developed module that is never

imported in the project (refer to 8.3 Rule n°2 on IMPORT links).

8. A component must not have more than one link to the same machine instance. For

example, an implementation cannot see (refer to 7.8 Clause SEES) and import the

same machine instance (refer to 8.3 Rule n°7 on dependency rules).

9. There must not be any cycle in the dependency graph of a project (refer to 8.3 Rule

n°8 on dependency rules).

Use

The IMPORTS clause contains the declaration of the list of imported machine instances.

These contain either the name of the machine only, that references the machine instance

with no renaming, or the name of the machine preceded by a renaming prefix that refers

to the instance of the renamed machine. If an imported machine instance has parameters,

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

121

the effective parameters of the machine must be provided to instantiate the instance of

the formal parameters of the new machine instance. The parameters of an abstract

machine are described in the CONSTRAINTS clause (refer to 7.5 The CONSTRAINTS).

They may be scalars or sets of scalars. It is necessary to prove that the effective

parameters of an imported machine instance meet the machine constraints.

Scalar Parameters Instantiation
An effective scalar parameter of an imported machine instance may be:

• a literal Boolean value TRUE or FALSE,

• an element of an enumerated set of the implementation or a seen machine instance

(refer to section 7.8 The SEES Clause)

• a formal scalar parameter from the implementation,

• a concrete constant of type Z or BOOL from the implementation or a seen machine

instance,

• an arithmetical expression formed from formal implementation parameters,

concrete constants or seen machine instances and literal integers. The arithmetical

operators allowed are ’+’, ’-’, ’*’, ’/’, mod, a
b
, succ and pred. It is necessary to

prove that each arithmetical sub-expression is in fact defined and that its result

belongs to the set of implementable integers INT (refer to 3.1 Typing foundations).

Set Parameters Instantiation
The instantiation of a set parameter for an imported machine instance may be:

• a formal set parameter of the implementation,

• an deferred or enumerated set of the implementation or a seen machine instance,

• a non empty interval with bounds made up of arithmetical expressions similar to

those allowed to instantiate scalar parameters.

Example

MACHINE

 MA (E0)
CONCRETE_CONSTANTS

 c1
PROPERTIES

 c1  0 . . 10

...
END

IMPLEMENTATION

 MA_i (E0)
REFINES

 MA
SEES

 Msees
IMPORTS

 Mimports (E0, COUL, c1 . . (c2 + 2))
VALUES

 c1 = 2

...
END

MACHINE

 Msees
SETS

 COUL = { Rouge, Vert, Bleu }
CONSTANTS

 c2
PROPERTIES

 c2  INT

END

MACHINE

 Mimp (ENS1, ENS2, ENS3)

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

122

Visibility

The formal parameter of imported machines are not accessible in the component which

imports. Sets and concrete constants are accessible in the clauses PROPERTIES, VALUES,

INVARIANT, ASSERTIONS and in the body of the initialization and the operations of the

machine. Abstract constants are accessible in the clauses PROPERTIES, INVARIANT,

ASSERTIONS and in the loop variants and loop invariants and in the predicate of the

ASSERT instructions (in operations and initialization). Variables are accessible in read

mode in the invariants and assertions. Concrete variables are accessible in read mode in

the initialization and operation body. Abstract variables are accessible only in loop

variants and loop invariants and in the predicate of the ASSERT instructions (in

operations and initialization). It is possible to use imported machine operations in the

initialization and in the operations of the implementation.

Promotion of operations

The imported machine operations can become automatically operations of the importing

component (refer to section 7.10, The PROMOTES Clause and section 7.11, The EXTENDS

Clause).

Visibility tables
Let MA_i be an implementation that imports an MB machine instance. The visibility table

below specified the access mode for each constituent of MB, in the clauses of MA_i.

 Clauses of MA_i Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS LOCAL
OPERATIONS

Constituent of MB

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants
and

invariants,
ASSERT
predicate

Formal parameters

Sets, enumerated set
elements,

concrete constants

read

read

read

read

read read

Abstract constants

 read read read
 read

Concrete variables

 read read/non write read
 read/write

Abstract variables

 read read
read/write

Operations

 read/write
read/write

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

123

7.8 The SEES Clause

Syntax

Clause_sees ::= "SEES" (Ident
+"."

)
+","

Description

The SEES link is used to reference within a component, an abstract machine instance

imported into another branch of the project, to access its constituents (sets, constants

and variables) without modifying them.

Restrictions

1. A seen machine instance (SEES clause) in a project must be imported in the project

(refer to 8.3 Rule n°3 of SEES links).

2. If a machine instance is seen by a component of a developed module, then the

refinements of this component must also see this instance (refer to 8.3 Rule n°4 on

SEES links).

3. A module component cannot see a machine instance that belongs to the module

import sub-graph (refer to 8.3 Rule n°5 on SEES links).

4. If a component sees a machine instance MA then it cannot see a machine instance

that belongs to the imports sub-graph of MA (refer to 8.3 Rule n°6 on SEES links).

5. A component must not have more than one link to the same machine instance. For

example, an implementation cannot see and import the same machine instance (refer

to 8.3 Rule n°7 on dependency links).

6. Cycles are forbidden in the dependency graph of a project (refer to 8.3 Rule n°8 on

dependency links).

Use

The list of seen machine instances is made up of machine names, possibly renamed. The

meaning of this renaming is given in the next paragraph. If a machine has parameters the

effective parameters of the machine must not be provided, as these will only be provided

in the INCLUDES and IMPORTS clauses that create the machine instances, but not in the

SEES clause that only references an already existing machine instance.

SEES and renaming
When machine MA sees a machine instance MB, the name of the instance that is actually

seen is built from the name of the machine seen, preceded by any successive renaming

of the instance of MB, that occurs in its imports tree, starting from the first common

ancestor of MA and MB.

Considering the following example:

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

124

b1.MchB

MchC

f3.e4.MchE MchA

SEES link

MchD

b1

IMPORTS link

f3.MchF

f3

e4

b1

f3.e4

Figure 1:Simple example of SEES and renaming

The figure above shows the dependency graph between machine instances of a project.

MchA sees the instances b1.MchB and f3.e4.MchD. In practice, MchC is the first common

ancestor of MchA and MchB. From MchC, MchB is imported with the renaming prefix b1. In

the same way, from MchD, MchE is imported with the successive renaming prefixes f3

then e4.

Example 2 is build as an extension of example 1. Now MchD also imports a new

renamed instance of MchC, c2.MchC. The graph below shows the instances that are

effectively seen by the new instance of MchA created transitively by this renaming

procedure.

SEES link

IMPORTS link

c2.b1.MchB

c2.MchC

c2.MchA

b1

c2

b1.MchB

MchC

f3.e4.MchE MchA

MchD

b1

f3.MchF

f3

e4

b1

f3.e4

f3.e4 b1

Figure 2: More complex example of SEES and renaming

The new instance of MchA noted c2.MchA sees the instances c2.b1.MchB and f3.e4.MchE. In

practice, c2.MchC is the first common ancestor of c2.MchA and c2.b1.MchB. From c2.MchC,

c2.b1.MchB is imported with the renaming prefix b1. In the same way, MchD is the

common ancestor of c2.MchA and MchE. From MchD, MchE is imported with the renaming

prefix f3.e4.

Visibility
Let MA be an abstract machine or a refinement that sees a machine instance MB. The

formal parameters of MB are not accessible in MA. The sets and constants of MB are

accessible in the INCLUDES, EXTENDS, PROPERTIES, INVARIANT, ASSERTIONS clauses and in

the body of the initialization and operations of the component. The variables are

accessible in read mode in the body of the initialization and of the operations. It is

possible to use the access operations (that do not modify the variables) for MB in the

initialization and in the operations on MA.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

125

If the instance of the seen machine is renamed, then its variables and its operations are

accessible in the machine by prefixing their name with the renaming prefix of the seen

machine.

Let MA_i be an abstract machine or a refinement that sees an instance of machine MB. The

formal parameters of MB are not accessible in MA_i. The sets and the concrete constants of

MB are accessible in the IMPORTS, EXTENDS, PROPERTIES, VALUES, INVARIANT, ASSERTIONS

clauses and in the body of the initialization and the operations of the component. The

abstract constants of MB are also accessible in the PROPERTIES, INVARIANT, ASSERTIONS

clauses and in loops variants and invariants, and in the predicates of ASSERT

substitutions in operations and the initialization. The concrete variables of MB are

accessible in read mode and in the body of the initialization and operations. The abstract

variables of MB are also accessible in loops variants and invariants, and in the predicates

of ASSERT substitutions in operations and initialization. It is possible to use consultation

operations (that do not modify the variables) of MB in the initialization and in the

operations of MA_i.

Transitivity
The SEES clause is not transitive. If a component M1 sees a machine M2 that itself sees as

machine M3, then the components of M3 are not accessible by M1. If they should be, then

M1 should also explicitly see M3.

Visibility tables
Let MA be a machine or a refinement that sees a machine MB. The visibility table below

specifies for each component of MB, the access modes that apply in the clauses of MA.

Clauses of MA

Components of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

Sets, enumerated set
elements,

concrete constants

Read

Read

Read

Read

Abstract constants

 Read Read Read Read

Concrete variables

 Read/non write

Abstract variables

 Read/non write

Operations

 Read/non write

Let MA_i be an implementation that sees an instance of machine MB. The visibility table

below specifies for each component of MB, the access modes that apply in the clauses of

MA_i.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

126

Clauses of MA_i Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS LOCAL
OPERATIONS

Components of MB

IMPORTS /
EXTENDS

 ASSERTION Instructions loops variants
and invariants,

ASSERT
predicates

Formal parameters

Sets, enumerated
set element,

concrete constants

Read

Read

Read

Read

Read

Read Read

Abstract constants

 Read Read Read Read

Concrete variables

 Read Read Read/non write

Abstract variables

 Read Read/non write

Operations

 Read/non write Read/non write

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

127

7.9 The INCLUDES Clause

Syntax

Clause_includes ::=

 "INCLUDES" ([Ident.]Ident ["(" Instantiating
+","

 ")"])
+","

Instantiating :=
 Term
 | Number_set
 | "BOOL"

 | Interval

Typing Rule

When an instance of an included machine has formal parameters then effective scalar

parameters must have the same type as the corresponding formal parameters of the

included machine and effective set parameters must have a type matching P(T) where T

must be a base type different from STRING.

Restrictions

1. The identifiers of an INCLUDE clause (disregarding the possible renaming prefix)

must refer to abstract machines.

2. Renamed identifiers must have only one renaming prefix.

3. Each identifier refering to a machine must be followed by the same number of

effective parameters as there is formal parameters.

Description

The INCLUDES clause is used to bring together a component, the components (sets,

constants and variables) of machine instances as well as their properties (PROPERTIES and

INVARIANT clauses), in order to make up a complex abstract machine using other abstract

machines.

Use

The INCLUDES clause comprises the declaration of the list of included machines

instances. Each instance may be either a machine name, it then refers to the instance

with no renamming prefix, or a machine name preceeded by a renaming prefix, it then

refers to the renammed machine instance. If an included machine instance has

parameters, then effective parameters should be supplied, in order to instanciate the

formal parameters of the newly created machine instance. Parameters of an included

machine are described in the CONSTRANITS clause (see section 7.5 The CONSTRAINTS

Clause). Machine parameters are either scalar parameters or set parameters. A Proof

Obligation is generated in order to prove that effective parameters meet the constraints

of formal parameters.

Instanciation of scalar parameters
An effective scalar parameter of an included machine instance has the type Z, BOOL or

Set, if Set is a deferred set or an enumerated set.

Instanciation of set parameters
An effective set parameter of an included machine instance has the type P(Z), P(BOOL)

or P(Set), if Set is a deferred set or an enumerated set.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

128

Refinement of an including component
When the abstraction of a refinement MA_r includes a machine instance MB, then

refinement MA_r may include MB again. If MB is included again, then deferred sets,

enumerated sets, concrete constants and concrete variables of MA_r that comes from the

previous inclusion of MB are glued with those of MB. Abstract constants and abstract

variables of MA_r that comes from the previous inclusion of MB are preserved in MA_r as

they are glued with data of MB.

Implementation of an including component

When a MA component includes a machine instance MB, then a number of possibilities

must be envisaged when writing implementation MA_i in MA. The implementation may

import the instance of the included machine MA. In this case, the components of MB

grouped in MA on inclusion are implemented in MA_i by applying the same name as

those of the instance of the imported machine. If not, the implementation may not

import the instance of the MB machine. It must then implant the components of MB

grouped in MA on the inclusion either directly, or via the components of instances of

machines seen or imported. The user remains free to choose the breakdown of their

choice. In the second case, if no instance of MB is imported in the project then MB is

called an abstract module. The abstract instance of MB is then created to serve as a

specification intermediary and it is abandoned in the development sequence.

Visibility
The formal parameters of included machine are not accessible in the component that

includes. The sets and the constants are accessible in the PROPERTIES, INVARIANT,

ASSERTIONS clauses and in the body of the initialization and of machine operations. The

variables are accessible in the invariants and the assertions. They are also accessible in

read mode in the body of the initialization and of operations. It is possible to use the

operations of a machine included in the machine initialization and operations.

Transitivity
The INCLUDES clause is transitive: if a component M1 includes an instance of machine M2

that in turn includes an instance of machine M3, then the sets, the constants, the variables

and the properties of M3 are grouped with those of M2 that are in turn grouped with those

of M1. These components are accessible by M1. However, the operations of M3 are not

accessible by M1. The grouping and access properties are defined for a given number of

machines included by transitivity.

Grouping data
If a component MA includes instances of machines Minc, then, in relation to the exterior of

the component, the set of components (the sets, the constants and the variables) of

included machines and included by transitivity is part if component MA in the same way

as the components that belong to this component. Therefore, if a component MB sees MA,

the sets, the constants and the variables of machines included and transitively included

by MA are accessible in component MB according to the same rules as the sets, the

constants and the variables of MB. If a component MA_r refines MA, the sets, the constants

and the variables of machines included and transitively included by MA are accessible in

component MA_r according to the same rules as the sets, the constants and the specific

variables of MA. Especially, the concrete variables of machines included by MA must all

be initialized in MA_r and are accessible in write mode in the body of operations in MA_r.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

129

Promotion of operations
The operations for an included machine may automatically become operations on the

component that performs the inclusion. It is the mechanism used to promote the

operation (refer to section 7.10 The PROMOTES and section 7.11 The EXTENDS).

Visibility table

Let MA be a machine or a refinement that includes a machine instance of MB. The

visibility table and the visibility table below specify for each component of MB, the usage

modes that apply in the clauses of MA.

 Clauses of MA

Components of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTIONS

INITIALISATION /
OPERATIONS

Formal parameters

Sets, enumerated set
elements,

concrete constants

Read

Read

Read

Abstract constants

 Read Read Read

Concrete variables

 Read Read/non write

Abstract variables

 Read Read/non write

Operations

 Read/write

Note that these visibility links are the same as those that would have occurred if the

clauses of the included machine were grouped in the corresponding clauses in the

machine that causes the inclusion (refer to the grouping diagram below).

Equivalent machine
If MA is an abstract machine that includes MB, the logically equivalent machine derived

from the inclusion of these two machines is presented. The name of the equivalent

machine, its parameters and its operations are those of MA. Its abstract and enumerated

sets, its constants, its properties, its variables, its invariant, its assertions and its

initialization respectively are those of MB concatenated with those of MA. In the case of

the initialization, note that the equivalent substitution is the sequencing of the

initialization of MB then of MA, in practice, as the operations of MB may be called in the

initialization of MA, it is necessary for the invariant of MB to have already been

established.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

130

MACHINE

 MA (ParamA)
CONSTRAINTS

 ConstrA
INCLUDES

 MB (Inst)
SETS

 SetsA
CONCRETE_CONSTANTS

 ConcCstA
ABSTRACT_CONSTANTS

 AbsCstA
PROPERTIES

 PropA
CONCRETE_VARIABLES

 ConcVarA
ABSTRACT_VARIABLES

 AbsVarA
INVARIANT

 InvA
ASSERTIONS

 AssertA
INITIALISATION

 InitA
OPERATIONS

 opA1 = SubstA1 ;

 …

 opAn = SubstAn
END

MACHINE

 MB (ParamB)
CONSTRAINTS

 ConstrB

SETS

 SetsB
CONCRETE_CONSTANTS

 ConcCstB
ABSTRACT_CONSTANTS

 AbsCstB
PROPERTIES

 PropB
CONCRETE_VARIABLES

 ConcVarB
ABSTRACT_VARIABLES

 AbsVarB
INVARIANT

 InvB
ASSERTIONS

 AssertB
INITIALISATION

 InitB
OPERATIONS

 opB1 = SubstB1 ;

 ...

 opBm = SubstBm
END

MACHINE

 MA (ParamA)
CONSTRAINTS

 ConstrA

SETS

 SetsB ; SetsA
CONCRETE_CONSTANTS

 ConcCstB , ConcCstA
ABSTRACT_CONSTANTS

 AbsCstB , AbsCstA
PROPERTIES

 PropB  PropA
CONCRETE_VARIABLES

 ConcVarB , ConcVarA
ABSTRACT_VARIABLES

 AbsVarB , AbsVarA
INVARIANT

 InvB  InvA
ASSERTIONS

 AssertB ; AssertA
INITIALISATION

 InitB ; InitA
OPERATIONS

 opA1 = SubstA1 ;

 ...

 opAn = SubstAn
END



Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

131

7.10 The PROMOTES Clause

Syntax

Clause_promotes ::= "PROMOTES" (Ident
+"."

)
+","

Description

The PROMOTES clause allows a component to promote operations (refer to section 7.23

The OPERATIONS) belonging to machine instances created by the component. These

may be instances of included machines, if the component is an abstract machine or a

refinement, instances of imported machines if the component is an implementation.

Promoting an operation of a machine instance MB in a component MA is equivalent to

define in MA an operation that takes the name of the operation of MB (possibly preceded

by the renaming prefix for MB, if MB is renamed), and with the signature and the body of

the operation in MB.

Restrictions

1. The names of the operations promoted by a component must designate operations of

included machine instances, if the component is an abstract machine or a refinement,

or of imported machine instances, if the component is an implementation.

2. Each promoted operation of an abstract machine refinement must have the name of

an abstract machine operation. Both operations must have the same signature (their

formal parameters must have the same name, be in the same order and be of the

same types).

Usage

Each name in the PROMOTES list refers to an operation of an included machine instance.

If the included machine instance is renamed, then the name of the operation must be

preceded by the renaming prefix of the instance. The name, the signature and the service

provided by a promoted operation are identical to the name, the signature and the

service provided by the operation that it promotes.

The promoted operations become independent operations of the abstract machine. From

the point of view of components that use this machine, nothing distinguishes the

promoted operations from operations declared in the OPERATIONS clause.

Unlike operations declared in the OPERATIONS clause, promoted operations may be called

in the machine INITIALISATION and OPERATIONS clauses, as they are here considered as

included machine operations.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

132

Example

In the example above, machine MchA includes the machines instances MchB and r2.MchC,

then it promotes the operations opB1 and opB3 of instance MchB and the operations opC1

and opC2 of the renamed instance r2.MchC. The machine will then have in addition to its

own operations, the four operations: opB1, opB3, r2.opC1 and r2.opC3.

MACHINE

 MA
INCLUDES

 MB,

 r2.MC
PROMOTES

 opB1,

 opB3,

 r2.opC1,

 r2.opC3

...
END

MACHINE

 MB
OPERATIONS

 opB1 = ... ;

 opB3 = ...

...
END

MACHINE

 MC
OPERATIONS

 opC1 = ... ;

 opC3 = ...

...
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

133

7.11 The EXTENDS Clause

Syntax

Clause_EXTENDS ::= "EXTENDS" ([Ident"."]Ident ["(" Instantiating
+","

 ")"])+","

Clause_EXTENDS_B0 ::= "EXTENDS" ([Ident"."]Ident ["(" Instantiating_B0
+","

 ")"])+","

Description

In an abstract machine or a refinement, the EXTENDS clause is equivalent to an inclusion

(refer to section 7.9 The INCLUDES Clause) of the machine instances and the

promotion (refer to section 7.10 The PROMOTES Clause) of all of the operations of the

included machine instances.

In an implementation, the EXTENDS clause is equivalent to importing and promoting

(refer to section 7.10 The PROMOTES Clause) all of the operations of the imported

machine instances.

Restrictions

 (refer to section 7.9 The INCLUDES Clause)

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

134

7.12 The USES Clause

Syntax

Clause_uses ::= "USES" Ident
+","

Description

When a component includes a number of machines, the included machines may share

the data of one of the included machines by using (via a USES link) the included

machine. In the diagram below, machine MchA includes the instances of machines MchB,

MchC and MchD. The included machine MchC is used (USES link) by MchB and MchD, which

allows MchB and MchD to access the data in MchC. MchB and MchD therefore share the

data in MchC.

MchB

MchC

MchD

MchA

INCLUDES link

USES link

Figure 3: Principles of the USES link

Restriction

 If a machine MA uses an instance of machine Mused, then there must be, in the

project, a machine that includes an instance of MA and the instance Mused (refer to

8.3, Rule n°9 on USES links).

 A machine that uses other machines cannot be refined. It constitutes an abstract

module (refer to section 8.2 Module B) and it must neither be seen nor imported

by other components.

Use

Let MA be an abstract machine, that uses other machines. The names in the USES list

designate machine instances used by MA. An instance of MA, as well as the instances of

machines used must all be included by a single component.

A machine that uses other machines must form an abstract module (refer to 8.2). It must

not be seen or imported by other components.

Visibility
The formal parameters of machines used are accessible in the PROPERTIES, INVARIANT,

ASSERTIONS clauses and in the body of the initialization and the operations in the

machine that uses it. The sets and constants are accessible in the PROPERTIES, INVARIANT,

ASSERTIONS clauses and in the body of the machine initialization and the operations. The

variables are accessible in the invariants and in the assertions. They are in addition,

accessible in read mode in the body of the initialization and in operations. It is illegal to

call the operations of a machine used in the initialization and in the operations of the

machine.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

135

Transitivity
The USES clause is not transitive. If a machine M1 uses a machine M2 that in turn uses a

machine M3, then the formal parameters, the sets, the constants and the variables of M3

are not accessible by M1.

Example

Machine MA includes the machine instances MX, y2.MY and z3.MZ. The instance of

machine y2.MY is used by the machines MX and MZ (and therefore by the instances of

machines MX and z3.MZ).

Visibility tables
Let MA be a machine that uses a machine MB. The visibility table and the visibility

diagram below specify for each component of MB, the modes of use that apply in the

clauses of MA.

Clauses of MA

Components of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTIONS

INITIALISATION /
OPERATIONS

Formal parameters

 Read Read

Sets, enumerated set
elements,

concrete constants

Read

Read

Read

Abstract constants

 Read Read Read

Concrete variables

 Read Read/non write

Abstract variables

 Read Read/non write

Operations

MACHINE

 MX
USES

 y2.MY

...
END

MACHINE

 MA
INCLUDES

 MX,

 y2.MY,

 z3.MZ

...
END

MACHINE

 MZ
INCLUDES

 y2.MY

...
END

MACHINE

 MY

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

136

7.13 The SETS Clause

Syntax

Clause_sets ::= "SETS" Set
+";"

Set ::= Ident
 | Ident "=" "{" Ident

+","
 "}"

Description

The SETS clause defines the list of deferred sets and enumerated sets for a component.

Restrictions

1. The name of an enumerated set of a refinement must differ from the name of

enumerated sets from abstract machines seen or imported by the refinement,

except in the following case: an enumerated set belonging to an abstraction of the

refinement may be identical to an enumerated set from a seen or imported

machine by the refinement (the two enumerated sets must have the same name and

the same ordered list of enumerated elements).

2. The name of an enumerated set of an implementation must differ from the name

of enumerated sets from abstract machines seen or imported by the

implementation, except in the following case: an enumerated set belonging to an

abstraction of the implementation may be identical to an enumerated set from a

seen or imported machine by the implementation (the two enumerated sets must

have the same name and the same ordered list of enumerated elements).

Use

The deferred sets and the enumerated sets define basic scalar types having the same

name as these sets (refer 3.1 Typing foundations). The deferred sets and the enumerated

sets defined in a component are implicitly preserved during the refinement of the

component, until its implementation.

• A deferred set is defined by its name. Deferred sets are used to designate objets

the user does not want to define the implementation at a specification level. A

deferred set is implicitly finished and non empty. It must be valued in the

component implementation (refer to 7.17 The VALUES Clause). Finally, any

deferred set is valued by a finite non empty integer interval.

• An enumerated set is defined by its name and by the ordered non empty list of its

enumerated elements. The sets enumerated sets serve to describe a listing. The

elements in an enumerated set are called literal enumerated items. They use the

same semantics as concrete constants using the enumerated set type.

List of deferred and enumerated sets of a component
The list of deferred and enumerated sets of an abstract machine gathers the sets defined

in the machine and in the machines included by the machine.

The list of deferred and enumerated sets of a refinement gathers, the sets defined in the

refinement and those of the abstraction of the refinement.

The list of deferred and enumerated sets of an implementation gathers the sets defined in

the implementation, those of the abstraction of the implementation, or finally those from

machines included by the implementation.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

137

Visibility
The deferred sets, the enumerated sets and the elements of an enumerated set from an

abstract machine are accessible in the machine, within the INCLUDES, EXTENDS,

PROPERTIES, INVARIANT, ASSERTIONS, INITIALISATION and OPERATIONS clauses. They are

also accessible by the components that see, include, use or import the machine.

The deferred sets, the enumerated sets and elements of an enumerated set from a

refinement are also accessible in the refinement, within the INCLUDES, EXTENDS,

PROPERTIES, INVARIANT, ASSERTIONS, INITIALISATION and OPERATIONS clauses.

The deferred sets, the enumerated sets and the elements of an enumerated set in a

refinement are accessible in the refinement, within the IMPORTS, EXTENDS, PROPERTIES,

VALUES, INVARIANT, ASSERTIONS, INITIALISATION and OPERATIONS clauses.

Example

In the example above, the abstract machine MA defines the POSITION deferred set and the

enumerated sets MOVE and DIRECTION. MA_i, the implementation of MA defines a new

SPEED deferred set and a new enumerated set SIGNAL. The two deferred sets in MA_i are

valued in the VALUES clause. The MA_i implementation imports the MB machine that has

an enumerated set MOVE that is identical to the one in MA_i , as it has the same name and

the same ordered list of enumerated elements.

MACHINE

 MA
SETS

 POSITION ;

 MOVE = {Stop, Forward, Reverse} ;

 DIRECTION = {North, South, East, West}

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
IMPORTS

 MB
SETS

 SPEED ;

 SIGNAL = {Red, Orange, Green}
VALUES

 POSITION = 0 .. 100 ;

 SPEED = -10 .. 10

...
END

MACHINE

 MB
SETS

 MOVE = {Stop, Forward, Reverse} ;

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

138

7.14 The CONCRETE_CONSTANTS Clause

Syntax

Clause_concrete_constants ::=

 "CONCRETE_CONSTANTS" Ident
+","

 | "CONSTANTS" Ident
+","

Description

The CONCRETE_CONSTANTS clause defines the list of concrete constants of a component.

A concrete constant is a data item that can be implemented in a programming language

whose value remains constant and that is implicitly preserved during refinement and

until implementation. A concrete constant may be an integer or a Boolean value, an

element in an abstract or enumerated set, a finite and non empty interval of Z or a

deferred set, or an array.

Restrictions

1. The name of a new concrete constant of a refinement or of an implementation

must differ from the name of the constants (concrete or abstract) in the

abstraction, except in the following case: a concrete constant may refine an

abstract constant of the same name of the abstraction, it is then implicitly equal to

the abstract constant, and both constants must have the same type.

Use

The CONCRETE_CONSTANTS and CONSTANTS clauses are equivalent, they may therefore be

used indifferently.

The concrete constants of an abstract machine gathers the concrete constants defined in

the machine and thoes of the included machines (refer to 7.9 The INCLUDES). The

concrete constants of a refinement gathers the concrete constants defined in the

refinement, those of the abstraction and those of the included machines. The concrete

constants of an implementation gathers the concrete constants defined in the

implementation and those of the abstraction.

The typing and the properties of concrete constants are expressed in the PROPERTIES

clause.

Each concrete constant belonging to a component must be valued in the component

implementation (refer to 7.17 The VALUES).

Each concrete constant defined in an abstract machine must be typed in the machine

PROPERTIES clause. A concrete constant defined in a refinement or in an implementation

may be:

• A new concrete constant. It must then be explicitly typed in the PROPERTIES clause

of the refinement or the implementation.

• A refinement of an abstract constant, if its name is identical to that of an abstract

constant from the abstraction. To do so, the abstract constant must be of the same

type as a concrete constant. It is then implicitly typed by a gluing predicate

meaning that the concrete constant of the refinement equals the abstract constant

of the abstraction.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

139

Visibility
The concrete constants of an abstract machine are accessible in read mode in the

PROPERTIES, INVARIANT, ASSERTIONS, INCLUDES, EXTENDS clauses and in the body of the

initialization and of the operations of the machine. They are accessible in read mode via

the components that see, include, use or import this machine.

The concrete constants of a refinement are accessible in read mode in the PROPERTIES,

INVARIANT, ASSERTIONS, INCLUDES, EXTENDS clauses and in the body of the initialization

and of the refinement operations.

The concrete constants of an implementation are accessible in read mode in the

PROPERTIES, INVARIANT, ASSERTIONS, IMPORTS, EXTENDS modes and in the body of the

initialization and the refinement operations. They are also accessible in write mode in

the VALUES clause.

Example

The abstract machine MA defines two concrete constants PosMin and PosMax and an

abstract constant PosInit. The implementation MA_i of MA defined the new concrete

constants PosAverage and PosInit. The latter refines the abstract constant with the same

name as MA. All of the constants of MA_i (PosMin, PosMax, PosAverage and PosInit) are

valued in the implementation.

MACHINE

 MA
CONCRETE_CONSTANTS

 PosMin,

 PosMax
ABSTRACT_CONSTANTS

 PosInit
PROPERTIES

 PosMin  INT 

 PosMax  NAT 

 PosInit  INT

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
CONCRETE_CONSTANTS

 PosAverage,

 PosInit
PROPERTIES

 PosAverage  INT
VALUES

 PosMin = -100 ;

 PosMax = 100 ;

 PosAverage = 0 ;

 PosInit = 50

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

140

7.15 The ABSTRACT_CONSTANTS Clause

Syntax

Clause_abstract_constants ::= "ABSTRACT_CONSTANTS" Ident
+","

Description

The ABSTRACT_CONSTANTS clause contains the list of abstract constants for an abstract

machine or a refinement.

An abstract constant is a data item with a constant value that will be refined in the

component refinement.

Restrictions

1. The name of the abstract constant of a refinement must be different from the name

of the constants (concrete or abstract) in the abstraction, except in the following

case: an abstract constant may refine a homonymous abstract constant of the

abstraction, it is then implicitly equal to the abstract constant of the abstraction.

Use

The name of the clause is followed by a list of identifiers that represent the name of the

abstract constants. The type and the properties of the abstract constants are expressed in

the PROPERTIES clause.

Each abstract constant defined in a refinement may be:

• A new abstract constant. It must be typed and may possibly have other properties

expressed in the PROPERTIES clause.

• A refinement of an abstract constant. If it has the same name as an abstract

constant of the abstraction, it is then unnecessary to type the abstract constant in

the PROPERTIES clause as it is typed by default using an implicit gluing property

that means that the new abstract constant equals the abstract constant of the

abstraction. Other properties of the constant may be expressed in the PROPERTIES

clause.

If Mn refines Mn-1, the abstract constants of Mn-1 may also be refined as concrete constants

of Mn (refer to 7.14 The CONCRETE_CONSTANTS Clause). If an abstract constant of

Mn-1 is not refined as an abstract constant, nor as a concrete constant, then it is no longer

a part of the constants of Mn. Then it is said to disappear in Mn.

The ABSTRACT_CONSTANTS clause is illegal in an implementation. Unlike the concrete

constants, the abstract constants are not systematically implementable in a programming

language.

Visibility
The abstract constants of a machine are accessible in read mode in the INCLUDES,

EXTENDS, PROPERTIES, INVARIANT, ASSERTIONS, INITIALISATION and OPERATIONS clauses of

the machine. They are accessible in read mode by the components that import, see,

include or use this machine (refer to Appendix C. Visibility Tables).

The abstract constants of a refinement are accessible in read mode in the PROPERTIES,

INVARIANT, ASSERTIONS, INCLUDES, EXTENDS, INITIALISATION and OPERATIONS clauses of

the refinement.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

141

The abstract constant of a refinement can be used in the INCLUDES, EXTENDS, PROPERTIES,

INVARIANT, ASSERTIONS, INITIALISATION and OPERATIONS clauses of the refinement.

Example

The Network abstract machine defines two abstract constants MaxNbrSubscribers and

Connection. Network_r, the refinement of Network defines the new abstract constant

InitSubscribers and the constant Connection, with the same name as an abstract constant of

the Network abstract machine. As Connection is implicitly equal to the constant of the

abstraction, the redefinition is used to retain this abstract constant and its properties in

the refinement.

MACHINE

 Network
ABSTRACT_CONSTANTS

 MaxNbrSubscribers,

 Connection
PROPERTIES

 MaxNbrSubscribers  NAT 

 Connection  0 .. MaxNbrSubscribers  0 .. MaxNbrSubsc

ribers

...
END

REFINEMENT

 Network_r
REFINES

 Network
ABSTRACT_CONSTANTS

 Connection,

 InitSubscribers
PROPERTIES

 InitSubscribers  NAT

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

142

7.16 The PROPERTIES Clause

Syntax

Clause_properties ::= "PROPERTIES" Predicate
+""

Description

The PROPERTIES clause is used to type the constants (concrete and abstract) defined in a

component and to express properties for these constants.

Restrictions

1. Each concrete or abstract constant, defined in a component and not homonymous

with a constant of the possible component abstraction, must be typed in the

component PROPERTIES clause by a typing predicate (refer to 3.1 Typing

foundations) located at the highest level of syntactical analysis in a list of

conjunctions.

2. Each constant defined in a refinement or an implementation homonymous with a

constant of the abstraction does not need to be typed as it is implicitly typed by a

predicate that means that the new constant is equal to the homonymous constant of

the abstraction.

3. If a constant of a included or seen machine instance by a refinement is

homonymous with and has the same characteristic (abstract or concrete) as a

constant of the refinement abstraction, then both constants refer to the same data

and must have the same type.

4. If a constant of a machine instance imported or seen by an implementation is

homonymous with and has the same characteristic (abstract or concrete) as a

constant of the implementation abstraction, then both constants refer to the same

data and must have the same type.

Use

The PROPERTIES clause is followed by a list of predicates separated by '' conjunctions.

The PROPERTIES clause of an abstract machine is used to type the constants of the

machine and to define their properties.

The PROPERTIES clause in a refinement is used to type the new constants of the

refinement and to define their properties, especially those which explicitate the gluing

property between constants of the refinement and constants of the abstraction. Each new

constant must be typed by a typing predicate. It is unnecessary to type a homonymous

constant, as it is typed by default by an implicit gluing predicate that means that the new

constant equals the abstract constant of the abstraction.

The use of the PROPERTIES clause in a refinement and in an implementation are similar.

However, as the declaration of abstract constants is illegal in an implementation, only

the new concrete constants of the implementation must be typed in typing predicates in

the PROPERTIES clause.

Typing of constants
The constants must be typed in one of the predicates located at the highest level of

syntax analysis in the PROPERTIES clause separated by '' conjunctions, using abstract

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

143

data typing predicates for the abstract constants (refer 3.1 Typing foundations) and

typing predicates for concrete constants (refer to 3.1 Typing foundations).

Properties of constants
The properties predicate for the constants allows expressing general properties that

relate to constants.

Gluing Properties
The PROPERTIES clause of a refinement is used to specify the gluing property between the

constants declared in the refinement and the constants of the abstraction. A predicate

expressiong a gluing property is called a gluing predicate. A gluing predicate may also

be a typing predicate. Remember that implicit gluing predicates start the PROPERTIES

clause for all homonymous gluing constants.

Visibility
In a machine PROPERTIES clause, the machine sets and constants are accessible. The sets

and the constants of the included or seen machines are also accessible. The machine

parameters, as well as the parameters of machines used are not accessible.

Example

The abstract machine MA defines the concrete constant Cst1 and the abstract constant

Cst2. These two constants are typed in the typing predicates located at the highest level

of syntax analysis in a list of conjunctions. The implication that follows these typing

predicates expresses a property that covers Cst1 and Cst2. It should be noted that the

brackets around it are required in this case, because of the priority level of ’’ that is

lower than that of ’’ (without these brackets, the predicate would be analyzed as

(Cst1  INT  Cst2  N  Cst1 < 0)  Cst2 = 0 ; then the typing predicates of Cst1 and Cst2

would no longer be in a list de conjunctions at the highest syntax level).

MACHINE

 MA
CONCRETE_CONSTANTS

 Cst1
ABSTRACT_CONSTANTS

 Cst2
PROPERTIES

 Cst1  INT 

 Cst2  N 

 (Cst1 < 0  Cst2 = 0)

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

144

7.17 The VALUES Clause

Syntax

Clause_values ::= "VALUES" Valuation
+";"

Valuation ::= Ident "=" Term
 | Ident "=" "Bool" "(" Condition ")"
 | Ident "=" Expr_array
 | Ident "=" Interval_B0

Expr_array ::= Ident
 | "{" (Simple_term

+"m"
 "m" Term)+","

 "}"

 | (Range
+""

 "" "{" Term "}")
+""

Interval_B0 ::= Arithmetical_expression ".." Arithmetical_expression
 | Number_set_B0

Number_set_B0 ::= "NAT"

 | "NAT1"

 | "INT"

Range ::= Number_set_B0
 | “BOOL”
 | Interval_B0

 | Ident

Description

The VALUES clause is used to give a value to concrete constants (refer to section 7.14 The

CONCRETE_CONSTANTS Clause) and the deferred sets (refer to section 7.13 The SETS

Clause) of the implementation.

Restriction

1. Each concrete constant or each deferred set must be valued at most once. If it is

valued once, it is explicitly valued, else it is implicitly valued.

2. A concrete constant or a deferred set implicitly valued must be homonymous with

a concrete constant or a deferred set of a seen or imported machine. In the case of

the valuation of a concrete constant, the two homonymous constants must have

the same type.

3. If a concrete constant or a deferred set of the implementation is used in the right

hand part of a valuation, it has to be previously explicitely valued or implicitely

valued.

Use

The name of the VALUES clause is followed by a list of valuations. Each valuation is

used to explicitly assign a value to a concrete constant or a deferred set. It comprises the

name of the data to value, followed by the equals operator ’=’ and the value of the data.

Explicit valuations are described as follows: valuation of scalar concrete constants, of

array constants, of interval constants and of deferred sets.

Valuation of deferred sets
When valuing a deferred set AbsSet, the type that represents this set changes. It takes the

type of the set that values it.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

145

There are three ways to value AbsSet:

• by a deferred set AbsSet2 of a seen or imported machine. The AbsSet type then

becomes AbsSet2.

• implicitly, by a homonymous set of a seen or imported machine. The AbsSet type

remains the same. In practice, as the two deferred sets have the same name, they

represent the same type.

• by an integer interval, that is implementable and not empty. The AbsSet type

becomes Z.

• by a deferred set AbsSet3 of the implementation, which has been already valued in

the VALUES clause or which is valued by homonymy with a deferred set of a seen

or imported machine.

It is necessary to prove that the valuation of a deferred sets is finite and not empty. If a

deferred set is valued by an interval with bounds that are arithmetical expressions, it is

necessary to prove that each sub-expression of these bounds belongs to INT.

The types of implementation data, built with type AbsSet, also change. Each occurrence

of AbsSet is replaced by the type of the valuation expression. The scope of this change of

type comprises a part of the VALUES clause, after valuing AbsSet as well as the IMPORTS,

EXTENDS, PROPERTIES, INVARIANT, ASSERTION, INITIALISATION and OPERATIONS clauses of

the implementation.

This change of type may be of interest in cases where the valuation by an interval of

integers is used (any deferred set will in time be valued by an integer interval, the first

two cases of valuation only defer this valuation). When the type AbsSet changes to type

Z, the data belonging to AbsSet may receive integer values (especially literal integers) and

be handled using arithmetical operators, as these operators are only defined in B for

integers. They will therefore become concretely usable.

Example

In the example above, concrete variables var1, var2 and var3, defined in MA, are of type

AbsSet. In the implementation MA_i, as AbsSet is valued by an integer interval, the type of

variables var1, var2 and var3 becomes Z. They may henceforth be initialized using

arithmetical expressions.

MACHINE

 MA
SETS

 AbsSet
CONCRETE_VARIABLES

 var1,

 var2,

 var3
INVARIANT

 var1  AbsSet 

 var2  AbsSet 

 var3  AbsSet

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
VALUES

 AbsSet = 0 .. 100
INITIALISATION

 var1 := 0 ;

 var2 := 100 ;

 var3 := (var1 + var2) / 2

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

146

Example of set valuation

In the example above, the deferred set Ens1 is valued by an integer interval. Ens2 is

valued by an integer interval constant of seen machine MB. Ens3 is valued by an deferred

type constant interval from MB. Ens4 is valued by deferred set Ens6 from MB. Finally, Ens5

is implicitly valued by the homonymous deferred set of MB.

Valuation of scalar concrete constants
Each scalar concrete constant is valued according to its type. If it belongs to Z, it must

be valued by an arithmetical expression. It is then necessary to prove that each

arithmetical sub-expression is in fact defined and that it is contained in the set of

implementable integers INT (refer to section 3.1, Typing foundations). If the concrete

constant belongs to BOOL, it must be valued by a Boolean expression. If it is an

enumerated or deferred type, it must be valued by an enumerated or deferred type

constant.

In the case of deferres type constants, where the deferred set has already been valued in

the VALUES clause, remember that the type of the constant is changed; it refers to the

type of the set that values the deferred set.

Example
In the example below, concrete constant c1 is valued by a literal integer. Constant c2 is

valued by an arithmetical expression, using concrete constant CstB2 of seen machine MB.

Constant c3 is valued by an enumerated element from the enumerated set COLOR

declared in MB. Constant c4 is valued legitimately by a literal integer as it is an integer

type since the valuation of EnsAbs1 by the integer interval 0 .. 12. Finally, constant c5 is

valued by concrete constant cteB1 of MB.

MACHINE

 MA
SETS

 EnsAbs1 ;

 EnsAbs2 ;

 EnsAbs3 ;

 EnsAbs4 ;

 EnsAbs5

...
END

MACHINE

 MA
SETS

 Ens1 ;

 Ens2 ;

 Ens3 ;

 Ens4

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
SEES

 MB

VALUES

 Ens1 = 0 .. 2 × c1 + 1 ;

 Ens2 = Interv ;

 Ens3 = IntervA ;

 Ens4 = Ens6

...
END

MACHINE

 MB
SETS

 Ens5,

 Ens6

CONCRETE_CONSTANTS

 c1,

 interv,

 intervA
PROPERTIES

 c1  0 .. 100 

 interv  NAT 

 intervA  Ens6
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

147

Valuation of array concrete constants
An array concrete constant may be valued in three different ways:

• by an array concrete constant from a seen or imported machine.

• by a set of maplets. A maplet is used to represent an n-uplet in which the n-1 first

elements designate the indices of the array element and in which the last element

refers to the value of the array element. The indices of a maplet must be scalar

literal values, while the value of a maplet must be a scalar value.

• by an array where all elements have the same value. This is done using the

cartesian product between the domain of the array and a singleton containing the

value of all elements of the array.

In the valuation of an array whose elements are integers, if an array value is defined by

an arithmetical expression, it is necessary to prove that each sub-expression belongs to

INT (refer to section 3.1 Typing foundations).

Example

MACHINE

 MA
SEES

 MB
SETS

 EnsAbs1

CONCRETE_CONSTANTS

 c1, c2, c3, c4, c5
PROPERTIES

 c1  INT 

 c2  NAT 

 c3  COUL 

 c4  EnsAbs1 

 c5  EnsAbs2

...
END

MACHINE

 MB
SETS

 COLOR = { Red, Green, Blue } ;

 EnsAbs2

CONCRETE_CONSTANTS

 cteB1,

 cteB2
PROPERTIES

 cteB1  EnsAbs2 

 cteB2  - 10 . . 10
END

IMPLEMENTATION

 MA_i
REFINES

 MA
SEES

 MB

VALUES

 c1 = - 100 ;

 c2 = cteB22 - 4 ;

 c3 = Blue ;

 EnsAbs1 = 0 . . 512 ;

 c4 = 42 ;

 c5 = cteB1

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

148

In the example below, the constant t1 is valued using the constant t4 in the machine seen

MB. The constant t2 is valued by a set of maplets: the element with the index (1) takes the

value FALSE, (2) takes the value TRUE. The constant t3 is valued by the array

EnsAbs × BOOL × {0} which associates to any element of the array domain, the value 0.

Valuation of concrete constants intervals
Each concrete constant interval is valued according to its type. If it is an integer type, it

may be valued by an integer constant interval or by an interval with bounds that are

arithmetical expressions. If they are a deferred type, they must be valued by a deferred

type constant interval.

In the valuation of an integer interval using arithmetical expressions, it is necessary to

prove that each sub-expression belongs to INT.

Example
In the example below, constant interval c1 is valued using constant cteInterv1 of seen

machine MB. Constant interval c2 is valued by the integer interval 0 .. MAXINT / 2 - 1,

where the upper bound is an arithmetical expression. Deferred set EnsAbs1 is valued by

the integer interval 0 .. 100. As a result, the data with type EnsAbs1 becomes Z. The

constant interval c3 belonging to EnsAbs1 is valued by the interval 1 .. 6. The constant

interval c4 belonging to the deferred set EnsAbs2 is valued by the constant interval

cteInterv2 of seen machine MB, this latter constant belonging to EnsAbs2.

MACHINE

 MA
SEES

 MB
CONCRETE_CONSTANTS

 t1, t2, b3
PROPERTIES

 t1  (0 . . 2) × BOOL 3 EnsAbs 

 t2  (1 . . 2) 9 BOOL 

 t3  EnsAbs × BOOL 3 INT

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
SEES

 MB

VALUES

 t1 = t4 ;

 t2 = { 1 m FALSE, 2 m TRUE } ;

 t3 = EnsAbs × {BOOL} × {0}

...
END

MACHINE

 MB
SETS

 EnsAbs
CONCRETE_CONSTANTS

 t4
 PROPERTIES

 t4  (0 .. 2) × BOOL 3 EnsAbs

...
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

149

Visibility
In the VALUES clause of an implementation, the concrete constants and the enumerated

sets of seen and imported machines are accessible in read mode. The concrete constants

and the deferred sets of the implementation can only appear in the right hand part of

valuations, after they have been valuated.

MACHINE

 MA
SEES

 MB
SETS

 EnsAbs1

CONCRETE_CONSTANTS

 c1, c2, c3, c4
PROPERTIES

 c1  INT 

 c2  0 .. (MAXINT / 2 - 1) 

 c3  EnsAbs1 

 c4  EnsAbs2

...
END

MACHINE

 MB
SETS

 EnsAbs2
CONCRETE_CONSTANTS

 cteInterv1, cteInterv2

PROPERTIES

 cteInterv1  INT 

 cteInterv2  EnsAbs2

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
SEES

 MB

VALUES

 c1 = cteInterv1 ;

 c2 = 0 .. (MAXINT / 2 - 1) ;

 EnsAbs1 = 0 .. 100 ;

 c3 = 1 .. 6 ;

 c4 = cteInterv2

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

150

7.18 The CONCRETE_VARIABLES Clause

Syntax

Clause_concrete_variables ::= "CONCRETE_VARIABLES" (Ident
+"."

)
+","

Description

The CONCRETE_VARIABLES clause defines the concrete variables of a component.

A concrete variable is a data item that can be implemented in a programming language,

a variable that therefore does not need to be refined as it is implicitly preserved during

refinement and through the implementation. This property then allows access in direct

read mode to the concrete variables of a machine in the implementations that will

import this machine, without necessarily requiring the use of a read service as is

necessarily the case for abstract variables.

Restrictions

1. The concrete variables declared in a machine must not be renamed.

2. The name of a new concrete variable of a refinement or an implementation must

differ from the name of the variables (concrete or abstract) in the abstraction,

except in the following case: a concrete variable may refine a homonymous

abstract variable of the abstraction, it is then implicitly equal to the abstract

variable.

Use

The concrete variables of an abstract machine gather the concrete variables defined in

the machine and those of the included abstract machines (refer to section 7.9 The

INCLUDES Clause). The concrete variables of a refinement gather the concrete

variables defined in the refinement, those of the abstraction and those of the included

abstract machines. The concrete variables of an implementation gather the concrete

variables defined in the implementation and those of the abstraction.

Typing and other invariant properties of concrete variables are expressed in the

INVARIANT clause.

Each concrete variable of a component must be initialized in the component

INITIALISATION clause (refer to 7.22 The INITIALISATION Clause).

Each concrete variable defined in an abstract machine must be typed in the machine

INITIALISATION clause. A concrete variable defined in a refinement or in an

implementation may be:

• a new concrete variable. It must then be explicitly typed in the INITIALISATION

clause of the refinement or the implementation.

• a refinement of an abstract variable, if it has the same name as an abstract variable

in the abstraction. In this case, the abstract variable must have the same type as the

concrete variable (scalar or array type). It is then implicitly typed by a gluing

predicate that means that the concrete variable is equal to the homonymous

abstract variable.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

151

Visibility
The concrete variables of a component can be used in the INVARIANT, ASSERTIONS clauses

of this component and in its refinements. They are accessible in read and in write modes

in the body of the initialization and of the operations of the component. The concrete

variables declared in a machine are accessible in read-only by the components that see,

include, use or import this machine.

The concrete variables of a refinement or an implementation are accessible in the

INVARIANT, ASSERTIONS clauses of this refinement and are accessible in read and in write

modes in the body of the initialization and the operations of the machine.

Example

The abstract machine MA defined two concrete variables Prod and MonthProd and an

abstract variable ExternalProd. The Prod and ExternalProd variables are implementable

integers and the MonthProd variable is an array of implementable integers with an index

in the interval 1..12. All of these variables are initialized in the INITIALISATION clause.

The MA_i implementation of MA defines the new concrete variables Receipts, Charges and

ExternalProd. The latter refines the abstract constant with the same name as MA. All of the

variables of MA_i (Prod, MonthProd, ExternalProd, Receipts and Charges) are initialized in the

INITIALISATION clause.

MACHINE

 MA
CONCRETE_VARIABLES

 Prod,

 MonthProd
ABSTRACT_VARIABLES

 ExternalProd
INVARIANT

 Prod  INT 

 Month Prod  (1 .. 12)  INT 

 ExternalProd  INT
INITIALISATION

 Prod : INT ||

 MonthProd : (1 .. 12)  INT ||

 ExternalProd : INT

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
CONCRETE_VARIABLES

 Receipts,

 Charges,

 ExternalProd
INVARIANT

 Receipts  INT 

 Charges  INT
INITIALISATION

 Prod := 0 ;

 MonthProd := (1 .. 12) × {0} ;

 ExternalProd := 0 ;

 Receipts := 0 ;

 Charges := 0

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

152

7.19 The ABSTRACT_VARIABLES Clause

Syntax

Clause_abstract_variables ::=
 "ABSTRACT_VARIABLES" Ident

+","

 | "VARIABLES" Ident
+","

Description

The ABSTRACT_VARIABLES clause defines new abstract variables into a machine or a

refinement . An abstract variable is a data item of any type, which may be refined during

component refinement.

Restrictions

1. The abstract variables declared in a machine must not be renamed.

2. The name of a new abstract variable of a refinement or an implementation must be

different from the name of the variables (concrete or abstract) of the abstraction,

except in the following case: an abstract variable may refine a homonymous

abstract of the abstraction, it is then implicitly equal to the abstract variable.

Use

The name of the clause is followed by a list of identifiers that represent the names of

abstract variables. The abstract variables must be typed (refer to section 3.1 Typing

foundations) and may have other invariant properties in the INVARIANT clause. They

must be initialized in the INITIALISATION clause.

In a refinement, each abstract variable defined may be:

• A new abstract variable. Its name must then be an identifier that is not renamed.

The abstract variable must be typed and may have other invariant properties in the

INVARIANT clause.

• The refinement of an abstract variable, if it has the same name as an abstract

variable of the refined component. The identifier of the variable is renamed if the

variable of the refined component comes from a renamed included machine (or

one that is transitively included) and that is renamed. In this case the abstract

variable is implicitely typed by a gluing invariant meaning that the new abstract

variable is equal to the homonymous abstract variable of the refined component.

Other invariant properties about the abstract variable may also be expressed in the

INVARIANT clause.

If refinement Mn refines Mn-1, the abstract variables of Mn-1 may also be refined as

concrete variables of Mn. If a variable of Mn-1 is not refined as an abstract variable, nor as

a concrete variable, then it disappears in Mn. It is therefore no longer a part of the

variables of component Mn.

The refinement abstract variables that do not come from an included machine instance

by the refinement must be initialized in the INITIALISATION clause.

In an implementation, it is illegal to define abstract variables.

Visibility
The abstract variables of a component are accessible in the INVARIANT and ASSERTIONS

clauses of this component. They are accessible in read and in write mode in the body of

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

153

the initialization and the operations of the machine and any refinement. They are all

accessible in read mode through the components that import, see, include or use this

machine (refer to Appendix C. Visibility Tables).

Let MA and MB be machines. If MA sees MB, the abstract variables of MB are accessible in

MA in read mode in the body of the initialization and in operations in MA. If MA uses, or

includes MB, the abstract variables of MB are accessible in MA in the INVARIANT and

ASSERTIONS clauses and they are accessible in read mode in the body of the initialization

and of the operations.

The abstract variables of a refinement are accessible in the INVARIANT, ASSERTIONS

clauses of this refinement and are accessible in read and write modes in the body of the

initialization and in the operations of the machine.

If Mn refines Mn-1, the abstract variables of Mn-1, that disappear in Mn are only accessible in

Mn, in the INVARIANT and ASSERTIONS clauses as well as in the INITIALISATION and

OPERATIONS clauses, in predicates used for substitutions/assertion and for loop variants

and invariants. They are no longer accessible in the refinements of Mn.

Let MA be a refinement and MB a machine. If MA sees MB, the abstract variables of MB are

accessible in MA in read mode in the body of the initialization and the operations.

If MA includes MB, the abstract variables of MB are accessible in MA in the INVARIANT and

ASSERTIONS clauses and they are accessible in read mode in the body of the initialization

and the operations.

The abstract variables declared in a refinement are not accessible by components

external to the module.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

154

7.20 The INVARIANT Clause

Syntax

Clause_invariant ::= "INVARIANT" Predicate
+""

Description

The INVARIANT clause contains, within a predicate called invariant, the typing of

variables declared in the component and also the properties of these variables.

The invariant expresses the invariant properties of variables of the abstract machine. It is

necessary to prove that component initialization (refer to section 7.22 The

INITIALISATION Clause) established the invariant and that each time a machine operation

is called, the invariant is preserved. External components may access the concrete

variables of an abstract machine in read mode, but not in write mode in order to avoid

breaking the invariant.

The invariant of a refinement or an implementation is used to express the linkage

between the new variables of the component and the variables of the abstraction called

gluing invariant.

Restrictions

1. Each concrete or abstract variable, defined in a component non homonymous to a

variable of a possible component abstraction, must be typed in the INVARIANT

clause of the component using a typing predicate (refer to section 3.1 Typing

foundations) located at the highest syntactical level in a list of conjunctions.

2. Each variable defined in a refinement or an implementation homonymous to a

variable of the abstraction must not be typed, as it is implicitly typed by a

predicate meaning that the new variable is equal to the variable homonymous

variable of the abstraction.

3. If a variable of a machine instance included by a refinement has the same name

and the same characteristic (abstract or concrete) as the variable of the refinement

abstraction, then both variables designate the same data and must be of the same

type.

4. If a variable of a machine instance imported by an implementation has the same

name and the same characteristic (abstract or concrete) as the variable of the

implementation abstraction, then the both homonymous variables designate the

same data and must be of the same type.

Use

The name of the INVARIANT clause is followed by a list of predicates used to type the

variables defined in the machine and to define their invariant properties.

The invariant of a refinement is used to type the new variables of the refinement and to

define its properties, especially the linkage between the refinement variables and those

of the abstraction.

The invariant of an implementation is similar to that of a refinement. It defines the

gluing invariant between the implementation variables and the variables of instances of

machines imported by the implementation.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

155

Typing of variables
The variables must be typed in one of the predicates located at the highest level of

syntactical analysis in the INVARIANT clause separated by '' conjunctions and using the

abstract data typing predicates for the abstract variables (refer to section 3.1 Typing

foundations) and the concrete variables typing predicate for the concrete variables (refer

3.1 Typing foundations).

The variables declared in the refinement may be split into two groups: the new variables

and the variables that refine homonymous abstract variables of the abstraction. Each

new variable must be typed by a typing invariant. A variable that refines a homonymous

abstract variable of the abstraction, is implicitely typed by a gluing invariant that means

that the new variable is equal to the homonymous abstract variable of the abstraction.

As the new variables declared in an implementation may only be concrete variables, the

typing of variables in the invariant only refer to concrete variables declared in the

implementation.

Linkage between variables
The invariant of a refinement is used to specify the linkage between the variables

declared in the refinement and the variables from its abstraction. Each predicate in the

invariant that defines this kind of linkage is called a gluing invariant. A gluing invariant

may take the form of a typing predicate or a property. Remember also that an implicit

gluing invariant by default links two homonymous variables, one being declared in the

refinement, the other in its abstraction.

The abstract variables of implementation abstraction may be linked to the concrete or

abstract variables of instances of imported machine (refer to the example below).

Let M_i be an implementation. If a concrete variable of the abstraction of M_i has the

same name as a concrete variable of an imported machine instance Mimp, then the two

variables are automatically linked by an implicit gluing invariant that means that the

variables are equal. As a result, the two variables must be of the same type. The two

variables will merge; it is said that the variable of M_i is implemented on the

homonymous variable of Mimp. The concrete variable of M_i then acts as a reference on

the variable with the same name in Mimp. The instance of machine Mimp becomes

responsible for managing the concrete variable and especially its initialization.

It is possible to implement a concrete variable from the M_i implementation using a

concrete variable with a different name from an imported machine instance Mimp by

writing in the invariant, the equality between two variables. However, in practice this

case is not interesting, since the two variables do not merge. To prove the invariant

preservation, it is therefore necessary to modify the two variables together.

Example

In the example below, the concrete variable var1 from machine MA is implemented by

variable vimp1, the abstract variable var2 is implicitly implemented on the homonymous

variable var2 of the imported machine Mimp, and the concrete variables var3 and var4 are

implemented locally as specific variables of the component. The concrete variable var5

is implemented on the homonymous variable var5 of imported machine Mimp.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

156

Visibility
In a machine INVARIANT clause, the formal parameters, the sets (deferred and

enumerated), the constants and the variables of the machine are accessible. The sets, the

constants and the variables of included machines are accessible. The parameters, the

sets, the constants and the variables of machines used are accessible. The sets and the

constants of machines seen are accessible.

In the INVARIANT clause of a refinement, the formal parameters, the sets (abstracts and

listed), the constants and the variables of the refinement are accessible. The constants

and the variables of the abstraction that disappear in the refinement are accessible. The

sets, the constants and the variables of included machines are accessible. The sets and

the constants of seen machines are accessible.

In the invariant of an implementation, the following components are accessible:

• The formal parameters, the sets, the enumerated elements, the concrete constants

and the concrete variables of the implementation,

• The abstract constants and the abstract variables of the abstraction of the

implementation,

• The sets, the enumerated elements, the constants and the variables of instances of

machines that are seen or imported by the implementation.

MACHINE

 MA
ABSTRACT_VARIABLES

 var1,

 var2
CONCRETE_VARIABLES

 var5
INVARIANT

 var1  NAT 

 var2  BOOL 

 var5  INT 

 (var1 > var5  var2 = TRUE)

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
IMPORTS

 Mimp
CONCRETE_VARIABLES

 var3
INVARIANT

 var3  NAT 

 var1 = vimp /* link invariant */

 /* implicit link invariant var5 = var5 */

...
END

MACHINE

 Mimp
ABSTRACT_VARIABLES

 vimp,

 var2
CONCRETE_VARIABLES

 var5
INVARIANT

 vimp  1 .. 100 

 var2  BOOL 

 var5  INT

...
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

157

Example

MACHINE

 MA
CONCRETE_VARIABLES

 var1
ABSTRACT_VARIABLES

 var2
INVARIANT

 var1  INT 

 var2  N 

 (var1 > 0  var1 + var2 = 0)

INITIALISATION

 var1 : MININT .. 0 ||

 var2 := - var1

...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

158

7.21 The ASSERTIONS Clause

Syntax

Clause_assertions ::= "ASSERTIONS" Predicate
+";"

Description

The ASSERTIONS clause comprises a list of predicates called assertions refering to the

component variables. Assertions are intermediate results deduced from the component

invariant use to make the proof of the component easier.

An assertion is a lemma that must be proven from the component invariant and from the

lemmas separated by ‘;’ that precede it in the ASSERTIONS clause. The order of assertions

is therefore significant. In the proof obligations relating to component operations, the

assertions are added as assumptions in addition to the invariant.

Example

In the example below, the concrete variable var is an implementable integer that verifies

var
2
 = 1. An assertion is added to indicate that the variable var is equal to 1 or to -1. In

practice, this assertion may be proven by taking as assumption the invariant. When

building other Proof Obligations for the machine, each time the invariant appears as an

assumption, then this assertion will be added to make the demonstration of the Proof

Obligation easier.

MACHINE

 MA
CONCRETE_VARIABLES

 var
INVARIANT

 var  INT 

 var
2
 = 1

ASSERTIONS

 var = 1  var = - 1

...
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

159

7.22 The INITIALISATION Clause

Syntax

Clause_initialization ::= "INITIALISATION" Substitution

Clause_initialization_B0 ::= "INITIALISATION" Instruction

Description

The INITIALISATION clause is used to initialize all of the variables of the component. It is

necessary to prove that the initialization of a component establishes the invariant.

The INITIALISATION clause may be considered as the declaration of a specific operation.

This operation does not have any parameters. Its role is to initialize the module variables

so that they establish the component’s invariant. When running the B0 code of a project,

all of the module initialization operations are called in a correct dependency order,

before calling the project entry point.

Restriction

1. Each component variable, which has not the same name as an instance variable of

the included or imported machine, must be initialized in the INITIALISATION

clause.

Use

The clause name is followed by a specification substitution. Substitutions are described

in chapter Substitutions.

All of the component variables must be initialized during the initialization phase. The

variables of machines included by the component must not be initialized by the

component as they are already initialized in the INITIALISATION clause of their machine.

On initialization of component variables, the variables of dependent machines

(included, used or seen) are considered as previously initialized. The initialization

allows modifying the variables of included machines by calling operations of their

included machines. This possibility may especially be used in order to establish the

invariants that express gluing properties for variables of included machines.

In a refinement, the initialization substitutions must be refinement substitutions. Like in

a machine, all of the refinement variables that do not come from an included machine

instance must be initialized. The variabled concerned here are concrete variables of the

refinement abstraction and of new variables declared in the refinement.

In an implementation, the concrete variables are initialized in the INITIALISATION clause.

The substitutions used in the initialization must however be implementation

substitutions also called instructions (refer to section 7.25.4, Instructions). All of the

implementation variables must be initialized. There are two ways to initialize a concrete

variable for an implementation M_i:

• Directly, by explicitly giving a value to the concrete variable in an initialization

instruction. The concrete variable is then localized in M_i.

• Indirectly, if the concrete variable has the same name as a concrete variable of an

imported machine instance Mimp. Then the two homonymous variables must have

the same type. The variable of M_i must not be initialized in the INITIALISATION

clause of M_i since it is implemented by Mimp. The concrete variable of M_i then

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

160

only represents a reference to the homonymous variable of Mimp. As a result, the

effective initialization of the concrete variable is done in Mimp.

The values of concrete and abstract variables of imported machines instances can be

modified by the initialization. Remember that on machine initialization, the variables of

instances of machines that are seen or imported by M_i are assumed to have already been

initialized. It does however remain possible to modify the values of variables imported

using the operations of these machines.

Visibility
Machine variables are accessible in read and write modes in the machine INITIALISATION

clause. The machine parameters, sets and constants are accessible in read mode. The

sets, constants and variables of instances of machines that are included, used or seen are

accessible in read mode, and used machines parameters are accessible in read mode.

In the initialization of a machine M1, it is possible to access the operations of machines

included by M1 and accessing operations on machines seen by M1. It is however illegal to

access the specific operations of M1 and the operations on machines used by M1.

The variables of the refinement are accessible in write mode in the component

INITIALISATION clause. The parameters, sets and constants of the refinement are

accessible in read mode in the initialization. The sets, constants and variables of

machines included or seen by the refinement are accessible in read mode in the

initialization.

In the initialization of refinement M1, it is possible to access the operations of machines

included by M1 and to access operations on machines seen by M1. It is however illegal to

access the operations of the OPERATIONS clause M1.

In an implementation, variables are accessible in read and in write mode in the

instructions of the INITIALISATION clause. They must be written before they are read.

Formal parameters, enumerated elements and constants of the implementation are

accessible in read mode in the initialization. The enumerated elements, the concrete

constants and the concrete variables of machines seen or imported by the

implementation are accessible in read mode in the initialization. The formal parameters

of the implementation, the sets, constants and variables of the implementation and of

instances of machines that are seen or imported are accessible in the loops invariant and

variants and in the ASSERT predicates of the initialization.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

161

Example

In the example below, abstract variable var1 in machine MA is implemented by variable

vimp, variable var2 is implicitly implemented on homonymous variable var2 of the

imported machine Mimp, and concrete variables var3 and var4 are locally implemented.

MACHINE

 MA
ABSTRACT_VARIABLES

 var1,

 var2
CONCRETE_VARIABLES

 var4
INVARIANT

 var1  NAT 

 var2  BOOL 

 var4  INT 

...
END

IMPLEMENTATION

 MA_i
REFINES

 MA
IMPORTS

 Mimp
CONCRETE_VARIABLES

 var3
INVARIANT

 var3  NAT 

 var1 = vimp /* gluing invariant */

INITIALISATION

 var3 := 0 ;

 setv2 (TRUE) ;

 setvimp1 (10) ;

 var4 := - 12

 /* implicit implementation of var2 */

...
END

MACHINE

 Mimp
CONCRETE_VARIABLES

 vimp,

 var2
INVARIANT

 vimp  1 .. 100 

 var2  BOOL

INITIALISATION

 vimp : 1 .. 100 | |

 var2 : BOOL
OPERATIONS

 setv2 (b0) =
 PRE

 b0  BOOL
 THEN

 var2 := b0

 END ;

 setvimp (in) =
 PRE

 b0  1 .. 100

 THEN

 vimp := in
 END
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

162

7.23 The OPERATIONS Clause

Syntax

Clause_operations ::= "OPERATIONS" Operation
+";"

Operation ::= Header_operation "=" Level1_substitution

Header_operation ::= [Ident
+","

 ""] Ident
+"."

 ["(" Ident
+","

 ")"]

Clause_operations_B0 ::= "OPERATIONS" Operation_B0
+";"

Operation_B0 ::= Header_operation "=" Level1_instruction

Substitution_body_operation ::=

 Block_substitution
 | Identity_substitution
 | Becomes_equal_substitution
 | Precondition_substitution
 | Assertion_substitution
 | Substitution_limited_choice
 | If_substitution
 | Select_substitution
 | Case_substitution
 | Any_substitution
 | Let_substitution
 | Becomes_elt_substitution
 | Becomes_such_that_substitution
 | Var_substitution
 | Substitution_call

Instruction_body_operation ::=

 Block_instruction
 | Identity_instruction
 | Becomes_equal_instruction
 | Assert_instructionion
 | If_instruction
 | Case_instruction
 | Instruction_as_long_as
 | Var_instruction
 | Instruction_call

Restrictions

1. The formal input and output parameters of an operation must be two by two

distinct.

2. In an abstract machine, the operations declared in the OPERATIONS clause must

not be renamed.

3. In an abstract machine, operation input parameters must be typed in the predicate

of a precondition substitution at the begining of the operation body by typing

predicates (refer to section 3.7, Typing operation input parameters and section

3.3, Typing abstract data) located at the highest level of syntactical analysis in a

list of conjunction. These input parameters cannot be used in the predicate of the

substitution precondition before being typed.

4. In an abstract machine, operation output parameters must be typed in the operation

body by the typing substitutions (refer to section 3.9, Typing local variables and

operation output parameters). These output parameters cannot be used in the

operation body before being typed.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

163

5. In an refinement, new operations cannot be defined.

6. In an implementation, each abstract machine operation must be declared in the

OPERATIONS clause or must be promoted (refer to section 7.10, The PROMOTES

Clause)

7. Each operation of a refinement or of an implementation must have the same name

and the same formal parameters as an operation in its abstraction (the

homonymous operation of the LOCAL_OPERATION clause in the case of a local

operation, else the homonymous operation of the abstract machine).

8. In the OPERATIONS clause of an implementation, only the operations specified in

the abstract machine of the implementation or in the LOCAL_OPERATIONS clause

can be defined.

9. In an implementation, each local operation specified in the LOCAL_OPERATIONS

clause must be implemented in the OPERATIONS clause.

10. The graph of the local operation call, taking into account only the implementations

of the local operations of the OPERATIONS clause, must not contain cycle.

Description

The OPERATIONS clause is used to declare operations in a component. Operations form

the dynamic part of B language as they may modify the values of variables. An

operation may have both input and output parameters. The operations of abstract

machines form the specifications of the operation for the module. The operations of a

machine may be used by other machines matching of operation calls (refer to section

6.16, Operation Call Substitution).

The OPERATIONS clause allows to declare the implementation of local operations,

specified in the LOCAL_OPERATIONS clause (refer to section 7.24, The

LOCAL_OPERATIONS Clause).

It is necessary to prove that the operations in an abstract machine preserve the machine

invariant. The operations must be refined until their implementation to become

programming operations. It is necessary to prove that at each step, the operation is

consistent with the operation that it refines.

Use in an abstract machine

The operations of an abstract machine comprise promoted operations (refer to section

7.10 The PROMOTES Clause and section 7.11 The EXTENDS Clause) and operations

from the OPERATIONS clause.

The OPERATIONS clause is used to declare the services offered by a machine and to

specify their behavior. The operations of an abstract machine constitute the dynamic

part of the machine, by opposition to the data (machine sets, constants, variables and

parameters) that constitute the static part. In practice, they allow the modification of data

in the machine. It is necessary to prove that calling a machine operation preserves the

machine invariant.

Operation parameters of developed modules (refer to section 8.2) and of base machines

must be implementable as they will be associated with a code, when operations

parameters of abstract modules may be of any type as they are not associated with code.

An operation comprises a header and a body.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

164

Operation header

The operation header is made up of an identifier that designated the name of the

operation and of any formal input and output parameters for the operation. The name of

an operation declared in an abstract machine must not include renaming. The input

parameters are represented by a list of bracketed identifiers that follow the name of the

operation. The output parameters are represented by a list of identifiers that precede the

name of the operation. The input and output parameters of an operation must be distinct

two by two.

Passing parameters by value
In B, when an operation is called, the actual parameters are passed by copy.

• The input parameters of the operation are used to parameterize operation calls.

When an operation is called, the value of each effective input parameter is copied

to the corresponding formal parameter.

• The output parameters from the operation are used to pass the results of an

operation call matching of values. After an operation call, the value of each formal

output parameter is copied to the corresponding effective parameter.

Scopes
The scope of the formal parameters defined in an operation header is the body of the

operation. The formal operation entry parameters are accessible in read-only mode in

read mode only, in the substitutions. The formal operation output parameters are

accessible in the substitutions in read and write mode. An output parameter has to be

initialized before it can be read.

Typing rules
The operation parameters of modules with an associated code (developed modules or

base machines) must be implementable types. The types allowed are those of a concrete

variable (integer, Boolean, deferred set, enumerated set or array types). In the case of

operation input parameters, the characters string type is also allowed, giving the ability

to send a message using an operation call.

The abstract module operation parameters may be of any type (refer 3.1 Typing

foundations).

Operation input parameters
The formal input parameters must be typed in the body of the operation, in a typing

predicate. To be able to use a formal input parameter in the operation, it is necessary to

type it in the text that precedes its use. An operation that has input parameters is written

using a precondition substitution, that types the formal input parameters then possibly

expresses other properties of these input parameters. When the operation is specified,

the assumption is made that the formal input parameters verify the precondition and

when this operation is called, it is necessary to prove that the effective parameters verify

the precondition. The formal input parameter cannot be modified in the body of the

operation. They will therefore always verify the precondition in the body of the

operation.

Example

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

165

Operation output parameters
The formal output parameters must be typed in the body of the operation. To be able to

use a formal output parameter in the operation, it must have been typed in the text that

precedes its use. The usual way of writing an operation with output parameters

comprises typing them and giving them a value in “becomes equal”, “becomes part of”,

“becomes such that” substitution or as effective output parameters of an operation call.

Example

Operation body

The body of an operation is a substitution. Only specification level substitutions are

allowed (refer to chapter 6 Substitutions).

MACHINE

 MA
OPERATIONS

 Service1 (x1, b1, tab1, mess) =
 PRE

 x1  NAT 

 b1  BOOL 

 tab1  (0 .. 10) × (0 .. 10)  INT 

 mess  STRING 

 ...
 THEN

 ...
 END
END

MACHINE

 MA
OPERATIONS

 ok, res1, tab2  Service2 =
 BEGIN

 res1 : (res1  0 .. 10  res1 / 2 = 0) ||

 tab2 : (0 .. 10) × (0 .. 10)  INT ||

 ...

 ok := bool (...)
 THEN

 ...
 END
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

166

Example

Visibility

The component variables are accessible in read and write mode in the OPERATIONS clause

of the component. The parameters, sets and constants of the component are accessible in

read mode. The sets, constants and variables of included, used or seen machines are

accessible in read mode, and the parameters of used machines are accessible in read

mode.

In the body of an operation, it is possible to access operations on included machines and

to access operations on seen machines. However, it is illegal to access operations

declared in the OPERATIONS clause of the machine and operations on used machines.

Use in a refinement

Refining an operation
In the successive refinements of a machine, each operation of the machine, whether first

declared in the OPERATIONS clause or promoted, must be refined by an operation. It is

illegal to declare new operations in a refinement.

The name of each operation of a refinement must correspond to the name of an

operation in the corresponding abstraction. This operation may be declared in the

OPERATIONS clause or may be a operation promoted, independently of the choice made

previously. In this way, each operation may be refined by:

• A specific operation in the OPERATIONS clause, whose name is that of the operation

declared in the abstraction. If the name of the abstraction operation comprises a

prefix, then the prefix should remain.

• An operation promoted by the refinement, the name of which is the name of the

operation declared in the abstraction. If the operation promoted by the refinement

comes from a machine instance included but not renamed, then this machine must

have an operation of the same name. If the operation promoted by the refinement

comes from an instance of a renamed included machine, then the first prefix to the

operation name must correspond to the renaming of the instance of the machine

included by the refinement and the name of the operation without the first prefix

must correspond to an operation of the included machine.

MACHINE

 MA
OPERATIONS

 res_min, res_max, equal  Compare (x1, x2)

=
 PRE

 x1  INT 

 x2  INT
 THEN

 res_min := min ({x1, x2}) ||

 res_max := max ({x1, x2}) ||

 egal := Bool (x1 = x2)
 END
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

167

Example

In a refinement, the formal parameters of each operation must be identical to those of

the refined operation. Each formal parameter keeps the same type as defined in the

abstraction.

Operation body
The body of an operation is a substitution. Only substitutions at refinement level are

allowed. It is not necessary to type the formal parameters of the operation in the body of

the operation. In practice, the name and the type of these parameters are determined in

the machine that corresponds to the refinement and remain identical during the

refinement. The operation refinement mechanism is characterized by the following

properties concerning the body of the refinement operation:

1. Substitutions should be less deterministic. Therefore, where abstraction has

choices, refinement should bring solutions in order to remove little by little the

indeterminism. In the last refinement, implementation, indeterminism must have

completely disappeared.

2. Preconditions may be weakened in refinements. In implementation, preconditions

must have disappeared. In parctice, preconditions are useless in refinements.

3. The structure of the substitution must therefore evolve towards the use of

substitutions that are more and more concrete. Concrete substitutions are

substitutions that may be executed by a computer program. In implementation,

only concrete substitutions are accepted.

MACHINE

 MB
OPERATIONS

 op1 = ... ;

 op2 = ...

...
END

MACHINE

 MC
OPERATIONS

 op1 = ...

...
END

MACHINE

 MD
OPERATIONS

 op3 = ...

...
END

MACHINE

 MA
INCLUDES

 b2.MB
PROMOTES

 b2.op1,

 b2.op2
OPERATIONS

 op3 = ... ;

 op4 = ...
...
END

REFINEMENT

 MA_r
REFINES

 MA
INCLUDES

 b2.MC,

 MD
PROMOTES

 b2.op1,

 op3
OPERATIONS

 b2.op2 = ... ;

 op4 = ...
...
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

168

The properties described above allow refining an operation step by step until a computer

program is obtained. It has to be proved that for each refinement, the body of the

operation preserves the invariantand is consistent with what was specified in the

abstraction.

Using an implementation

The OPERATIONS clause of an implementation follows the same principles as those used in a

refinement, but the substitutions used in its body must obey the following principles: the

substitutions used must be deterministic, the preconditions must have disappeared and the

substitutions must be concrete ones, so that they can be executed by a program (refer to

section 7.24, The LOCAL_OPERATIONS Clause).

Example

MACHINE

 MA
OPERATIONS

 res_min, res_max, equal  Compare (x1, x2)

=
 PRE

 x1  INT 

 x2  INT
 THEN

 res_min := min ({x1, x2}) ||

 res_max := max ({x1, x2}) ||

 egal := bool (x1 = x2)
 END
END

REFINEMENT

 MA_r
REFINES

 MA
OPERATIONS

 res_min, res_max, equal  Compare (x1, x2)

=
 BEGIN

 IF x1  x2 THEN

 res_min, res_max := x1, x2
 ELSE

 res_min, res_max := x2, x1
 END ;

 egal := bool (x1 = x2)
 END
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

169

7.24 The LOCAL_OPERATIONS Clause

Syntax

Clause_local_operations ::= "LOCAL_OPERATIONS" Operation
+";"

Operation ::= Header_operation "=" Level1_substitution

Header_operation ::= [Ident
+","

 ""] Ident
+"."

 ["(" Ident
+","

 ")"]

Substitution_body_operation ::=

 Block_substitution
 | Identity_substitution
 | Becomes_equal_substitution
 | Precondition_substitution
 | Assertion_substitution
 | Substitution_limited_choice
 | If_substitution
 | Select_substitution
 | Case_substitution
 | Any_substitution
 | Let_substitution
 | Becomes_elt_substitution
 | Becomes_such_that_substitution
 | Var_substitution
 | Substitution_call

Restrictions

1. The formal parameters of a local operation must be distinct two by two.

2. Local operations must not be renamed.

3. Input parameters of a local operation must be typed by typing predicates in the

precondition predicate located at the beginning of the body of the local operation (refer to

section 3.7, Typing operation input parameters). These input parameters cannot be used in

the precondition predicate before being typed.

4. Output parameters of a local operation must be typed in the body of the local operation

(refer to section 3.9, Typing local variables and operation output parameters).

Description

Local operations of an implementation are local because they are usable only by the

operations (local or non local) of this implementation. A local operation is specified in

the LOCAL_OPERATIONS clause and implemented in the OPERATIONS clause, with the

implementation of non local and non promoted operations.

The local operations share many characteristics with non local operations (refer to

section 7.23, The OPERATIONS Clause) : they can modify variables through

substitutions; they can have input and output parameters. They are different than non

local operations by their refinement and visibility: they are specified and implemented in

the same implementation and are accessible only by the operations of the

implementation in which they are defined.

It is necessary to prove that the local operation specifications preserve the invariant of

imported machine and that the implementation of each local operation (refer to section

7.23, The OPERATIONS Clause) is consistent with the local operation specification.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

170

Use

Local operations are use to reduce the size of a B project. A local operation is defined in

an implementation by its specification and its implementation. As always in the B

method, calls will be replaced by the specification of the local operation during the

proof and by a call to their implementation in the software associated to the project.

The specification of a local operation requires abstract machine substitutions, as the

specification of a non local operation. In particular, simultaneous substitutions are

authorized, but not sequencing substitutions. Constants and abstract variables of the

implementation refinement and of the machine instances seen or imported by the

implementation are accessible in the operation specification. Moreover, imported

variables are directly modifiable by the local operation specification.

The implementation of a local operation is located in the OPERATIONS clause, with the

implementation of the machine operations which are not promoted by the

implementation. They have to obey the same rules as non local operations. In particular,

simultaneous substitutions is forbidden, sequencing substitutions are authorized and

constants and abstract variables are not accessible in the instructions.

A local operation can be called by the implementations of the non local operation. It can

be call by the implementation initialization. It can modify directly the concrete

variables of the implementation and the variables of the imported machine instances

(directly in the specification of local operations and indirectly, by operation calls in the

implementation of local operations. Refer to the subsection Equivalent model hereafter).

If a local operation is called several times, a common processing is factorized.

Example

IMPLEMENTATION

 MA_i
…

LOCAL_OPERATIONS

 max_y =
 BEGIN

 x0 := max (y1, y2)
 END
OPERATIONS

 max_y =

 IF y1 > y2 THEN

 x0 := y1
 ELSE

 x0 := y2
 END

 ;
 OpA =
 BEGIN
 …

 max_y ;
 …
 END
END

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

171

Equivalent model

The local operations are described by the following equivalent model. Let MA_i be an

implementation that defines the local operation op_loc and that imports the machine MB.

The general principle of the equivalent model is as follow : the implementation MA_i

imports a machine M_loc containing the specification of op_loc. The machine M_loc is

refined by the implementation M_loc_i which contains the implementation of op_loc and

which extends MB. MA_i is obtained from MA_i by suppressing the declarations of

concrete variables and the initialization.All the elements of MB are replicated in the

machine M_loc. In the case where MB includes a machine MC, then all the data of MC are

replaced in M_loc and one brings into effect the expansion of the calls to the MC

operations.All the concrete variables in MA_i are replaced in M_loc. The invariant of

M_loc is composed by the invariants of MB and MC and by the typing of concrete

variables of MA_i. The initialization of M_loc includes the initialization of MC, then the

initialization of MB, then the initialization of MA_i. At last, the instuctions of the MA_i

operation body which are not operation calls, are transformed into operations in M_loc

and M_loc_i.

IMPLEMENTATION

 MA_i
…

LOCAL_OPERATIONS

 op_loc = …
OPERATIONS

 op_loc = …

 ;

 opA =
 BEGIN

 …
 op_loc ;

 …
 END
END

IMPLEMENTATION

 MA_i
…

OPERATIONS

 opA =
 BEGIN

 …
 op_loc ;

 …
 END
END

MACHINE

 MB
…

OPERATIONS

 opB = …
END

MACHINE

 MB
…

OPERATIONS

 opB = …
END

MACHINE

 M_loc
…

OPERATIONS

 op_loc = …
END

IMPLEMENTATION

 M_loc_i
…

OPERATIONS

 op_loc = …
END

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

172

7.25 Specificities of the B0 language

B0 is the part of B language describing operations and data of implementations. B0 is

the equivalent of a computer programming language, manipulating concrete data,

whereas B language is a language of specification and of programming.

The concrete data present in B0 are concrete constants, concrete variables, operation

input and output parameters, machine parameters, local variables, deferred sets and

enumerated sets, along with their elements. This kind of data is described in section 3.4

Types and Constraints of Concrete data.

In order to clearly distinguish between the languages B and B0, a new vocabulary is

adopted to designate productions of the B0 grammar. Concrete substitutions are called

instructions (refer to section 7.25.4). Concrete predicates are called conditions (refer to

section 7.25.3) and concrete expressions are called terms (refer to section 7.25.2).

7.25.1 Array controls in B0

Description

So as to guarantee that concrete arrays (refer to section 3.4 Types and Constraints of

concrete data) can be translated, a B0 compatibility control, as defined below, is added

to typing controls concerning predicates expressions and the substitutions which are to

be translated .

Restrictions

1. Two concrete arrays are compatible in B0 if they have the same type and if, at syntactic

level, they were typed with the same domain of definition. The domain of definition of an

array is either determined directly when the array is typed in a typing predicate which

explicitly defines this domain, or by inference if the array is typed with the help of another

array.

Use

Two concrete arrays can be incompatible for a computing program although they are of

the same type. This happens when certain index sets of the arrays are intervals of

different values.

For example, the concrete arrays Arr1 : (1..5) 3 INT and Arr2 : (1..10) 3 INT are of the

same type, but they cannot be used as a value for the same computing piece of data,

because their size is different.

According to the restriction announced above, the concrete arrays Arr1 and Arr2 are not

compatible in B0 since their domains of definition (1.5) and (1..10) are not syntactically

distinct.

This control is a sufficient condition but not necessary so as to assure that the values of

two concrete arrays are compatible. Indeed, if c1 and c2 are two concrete constants

designating two equal positive integers. Then the arrays Arr3 : (0..c1) 3 INT and

Arr4 : (0..c2) 3 INT are not compatible in B0 , even if c1 and c2 are equal.

7.25.2 TERMS

Syntax

Term ::=

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

173

Simple_term

 | Arithmetic_expression

 | Record_term

 | Record_term (“’” Ident) +

Simple_term ::=

 Ren_ident

 | Lit_integer

 | Lit_boolean

 | Ren_ident (“’” Ident) +

Lit_integer ::=

 Literal_integer

 | “MAXINT”

 | “MININT”

Lit_boolean ::=

 “FALSE”

 | “TRUE”

Arithmetic_expression ::=

 Lit_integer

 | Ident_ren

 | Ren_ident “(“ Term
+”,”

“)”

 | Ident_ren (“’” Ident)
+

 | Arithmetic_expression “+” Arithmetic_expression

 | Arithmetic_expression “-” Arithmetic_expression

 | “-” Arithmetic_expression

 | Arithmetic_expression “x” Arithmetic_expression

 | Arithmetic_expression “/” Arithmetic_expression

 | Arithmetic_expression “mod” Arithmetic_expression

 | Arithmetic_expression exp Arithmetic_expression

 | “succ” “(“ Arithmetic_expression “)”

 | “pred” “(“ Arithmetic_expression “)”

 | “(“ Arithmetic_expression “)”

Record_term ::=

 “rec” “(“ ([Ident “:”] (Term | Array_expression)) +”,” “)”

Array_expression ::=

 Ident

 | “{“ (Simple_term
+”|->”

 “|->” Term)
+”,”

 “}”

 | Simple_term
+” x ”

 “x” “{“ Term “}”

B0_interval ::=

 Arithmetic_expression .. Arithmetic_expression

 | B0_Number_set

B0_Number_set ::=

 “NAT”

 | “NAT1”

 | “INT”

Description

Terms represent the restriction of expressions of B language that can be used in B0.

Terms can be implemented by a computing program. They are used within instructions

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

174

and conditions.

Terms must be of the type of concrete variables (refer to section 3.6 Typing concrete

variables)

Direct use, in the instructions, of terms requires to prove that the terms are well defined

and can be correctly implemented in a classical programming language. To obtain this,

the following proof obligations will have to be demonstrated :

 When data of integer type is used in a B0 expression, the proof must be made that

the data belongs to INT (defined by MININT .. MAXINT) which is the set of concrete

integers. Indeed, the hypothesis is made that on the target machine on which the

project is being executed, it is possible to represents directly any integer between

MININT and MAXINT without any risk of overflow.

 When an arithmetical operator is used in a B0 expression, it must be proved that the

operands belong to the definition domain of the operator in B0 and that the result

belongs to INT. The arithmetical operators which can be used in terms, along with

their domains of definition are given in the array below:

B0 arithmetic expression Condition

B0 addition a + b a  INT  b  INT  a + b  INT

B0 subtraction a - b a  INT  b  INT  a - b  INT

B0 unary minus - a a  INT  - a  INT

B0 multiplication a x b a  INT  b  INT  a  b  INT

B0 integer division a / b a  INT  b  INT - {0}  a / b  INT

B0 modulo a mod b a  NAT  b  NAT1  a mod b  INT

B0 raise to the power a
b
 a  INT  b  NAT  a

b
  INT

B0 successor succ (a) a  INT  succ (a)  INT

B0 predecessor pred (a) a  INT  pred (a)  INT

 When an access to an element of a concrete array is made in an instruction (it is to

be remembered that in B an array is a total function), it must be proved that the

index used belongs to the definition domain of the array.

7.25.3 CONDITIONS

Syntax

Condition ::=

 Simple_term “=” Simple_term

 | Simple_term “” Simple_term

 | Simple_term “<” Simple_term

 | Simple_term “>” Simple_term

 | Simple_term “” Simple_term

 | Simple_term “” Simple_term

 | Condition “” Condition

 | Condition “” Condition

 | “¬” “(“ Condition “)”

 | “(“ Condition “)”

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

175

Description

Conditions represent the restriction of predicates of B language that can be used in B0.

Conditions can be evaluated by a computing language. They are used in B0 as branching

conditions of conditional instructions IF instructions, and as exit conditions of loop

instructions.

In the case of equality and inequality predicates involving arrays, it must be remembered

that the arrays must, of course, be of the same type , and they must also have the same

definition domain (refer to section 7.25.1 Array control in B0).

7.25.4 Instructions

Syntax

Instruction ::=

 Block_instruction

 | Local_variable_instruction

 | Identity_substitution

 | Becomes_equal_to_instruction

 | Operation_call_instruction

 | Conditional_instruction

 | Case_instruction

 | Assertion_instruction

 | Sequence_instruction

 | While_instruction

Block_instruction ::= “BEGIN” Instruction “END”

Local_variable_instruction ::= “VAR” Ident +”,” “IN” Instruction “END”

Becomes_equal_to_instruction ::=

 Ren_ident [“(“ Term +”,” “)”] “:=” Term

 | Ren_ident “:=” Array_expression

 | Ren_ident “:=” bool” “(“ Condition “)”

 | Ren_ident (“’” Ident)+ “:=” Term

Operation_call_instruction ::=

 [Ren_ident “+”,” c] Ren_ident [“((Term | Literal_string) +”,” “)”]

Sequence_instruction ::= Instruction “;” Instruction

Conditional_instruction ::=

“IF” Condition “THEN” Instruction

(“ELSIF” Condition “THEN” Instruction)+

(“ELSE” Instruction)

“END”

Case_instruction ::=

 “CASE” Simple_term “OF”

 “EITHER” Simple_term +”,” “THEN” Instruction

 (“OR” Simple_term +”,” “THEN” Instruction)*

 [“ELSE” Instruction]

 “END”

 “END”

Assertion_instruction ::=

 “ASSERT” Predicate “THEN” Instruction “END”

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

176

While_instruction ::=

 “WHILE” Condition “DO” Instruction

 “INVARIANT” Predicate

 “VARIANT” Expression

 “END”

Description

Instructions represent a restriction of the substitutions of B language which can be

implemented by a computing program. Instructions are used in the initialisation body

and in the operations body. Here are the particularities of the instructions:

“becomes equal to” instruction

In an instruction “becomes equal to”, only the following affectations are allowed:

 affectation of a scalar data

 affectation of an array data, in which all the elements of this array must be given a

value. The effective value can be another array data or a literal array. The arrays

must of course be of the same type, but they must also have the same definition

domain. (refer to 7.25.1 Array Control in B0).

 affectation of an array item, the indexes used to designate an array item must be

terms.

 affectation of a field, or a sub-field of a record data.

Operation call instruction

In an operation call instruction, the effective input parameters can either be terms, or

strings of literal characters. If an effective input or output parameter of an operation call

is an array, the formal parameter and the effective parameter must of course be of the

same type, but they must also have the same definition domain (refer to section 7.25.1

Array Control in B0).

Case instruction

In a CASE instruction, the selection expression must be a simple term.

ASSERT Instruction

In an ASSERT instruction, the introduced assertion remains a predicate because it is not

used for code production, but for proof of implantation.

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

177

7.26 Identifier Anti-Collision Rules

The identifier anti-collision rules serve to avoid that in a component clause, it becomes

possible to access several constituents with the same name, but which designate

different constituents without knowing which one is effectively used.

The anti-collision rules are mainly dependent on the visibility rules that apply between

components. In practice, if a component MA sees an instance of machine MB, then any

data item in MB accessible by MA must not have the same name as any data in MA.

The data declared in a predicate, a substitution or in an operation header are not part of

anti-collision checks. In practice, they have a limited scope restricted respectively to the

predicate and to the substitution and the body of the operation where they are declared.

If they have the same name as an accessible constituent, then they hide it locally.

Abstract machine

With an abstract machine Mch.

List LMch comprises the following identifiers of Mch :

• name of Mch,

• name of parameters of Mch,

• name of deferred sets and enumerated sets of Mch,

• name of listed elements of constants of Mch,

• name of variables of Mch,

• name of operations of Mch.

List LSees comprises the following identifiers for each seen machine MSees by Mch :

• name of MSees,

• name of deferred sets and of enumerated sets of MSees,

• name of listed elements and of constants of MSees,

• name of variables of MSees,

• name of operations of MSees.

List LInc comprises the following identifiers for each included machine MInc by Mch :

• name of MInc,

• name of deferred sets and of enumerated sets of MInc,

• name of listed elements and of constants of MInc,

• name of variables of MInc,

• name of operations of MInc.

List LUses comprises the following identifiers for each used machine MUses by M :

• name of MUses,

• name of parameters of MUses,

• name of deferred sets and of enumerated sets of MUses,

• name of listed elements and of constants of MUses,

• name of variables of MUses.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

178

Anti-Collision Rule
The names in the list LMch  LSees  LInc  LUses must be distinct two by two.

Refinement

With a refinement Raf with the abstract machine Mch.

List LRaf comprises the following identifiers of Raf :

• name of Mch,

• name of parameters of Raf,

• name of deferred sets and of enumerated sets of Raf,

• name of listed elements and of constants of Raf,

• name of variables of Raf,

• name of operations of Raf,

• name of abstract constants and of abstract variables in the abstraction of Raf

that disappear in Raf.

List LSees comprises the following identifiers for each seen machine MSees by Raf :

• name of MSees,

• name of deferred sets and of enumerated sets of MSees,

• name of listed elements and of constants of MSees,

• name of variables of MSees,

• name of operations of MSees.

List LInc comprises the following identifiers for each included machine MInc in Raf :

• name of MInc,

• name of deferred sets and of enumerated sets of MInc,

• name of listed elements and of constants of MInc,

• name of variables of MInc,

• name of operations of MInc.

Anti-collision rules
The names in the LRaf  LSees  LInc list must be distinct two by two.

Implementation

With an implementation Imp, the abstract machine of which is Mch.

List LImp comprises the following identifiers of Imp :

• name of Mch,

• name of parameters of Imp,

• name of deferred sets, except those which are implemented by homonymy,

• name of enumerated sets and of listed elements of Imp, except for any

enumerated set with the same name as an enumerated set in a requested

machine,

• name of listed elements of Imp,

Components

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

179

• name of concrete constants of Imp, except those valued by homonymy,

• name of abstract constants of Imp,

• name of concrete variables of Imp, except those implemented by homonymy,

• name of specific operations of Imp,

• name of abstract constants and of abstract variables of the abstraction of Imp

disappear in Imp.

List LImports comprises the following identifiers for each imported machine MImports by

Imp :

• name of MImports,

• name of deferred sets and listed of sets of MImports,

• name of listed elements and of constants of MImports,

• name of variables of MImports,

• name of operations of MImports.

List LSees comprises the following identifiers for each machine seen MSees by Imp :

• name of MSees,

• name of deferred sets and of enumerated sets of MSees,

• name of listed elements and of constants of MSees,

• name of constants of MSees,

• name of variables of MSees,

• name of operations of MSees.

Anti-collision rule
The names in the list LImp  LImports  LSees must be distinct two by two.

Architecture

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

181

8. B ARCHITECTURE

8.1 Introduction

A complete development in B corresponds to a B project. A project enables formally

modeling a system of any type. The object of the B project is to produce an executable

program. The functional security of this executable program is studied in detail by the B

method. The construction of a B project is performed using the B module development

approach.

8.2 B Module

Presentation

A B module models a sub-system; it forms a part of a B project. The modules are made

up of B components. The three sorts of B components that exist are the abstract

machine, refinement and implementation. A module has the following properties: it

always has an abstract machine, representing the module specification. It may have an

implementation and possibly some refinements. Finally, it may have related code. There

are three sorts of modules defined according to their properties. These are modules

developed by the successive refinements of an abstract machine, of base modules and

abstract modules. These modules are described in the table below.

 Module

Properties

Developed module Base module Abstract module

Has an abstract machine Yes Yes Yes

Has an implementation and

possibly refinements

Yes No No

Has associated code Yes

(by translation)

Yes

(manually)

No

Abstract machine

An abstract machine contains the description of the specification of a B module. For this

reason, B language should be regarded as a specification language. Only the abstract

machine of a module is accessible by the external modules. Sometimes, the term

abstract machine or more simply machine is used in place of module as a shortcut. In

practice, the module name and its abstract machine together are confused with the

module interface, i.e. the part that is accessible from the outside, is common to a module

and its abstract machine.

An abstract machine comprises links (refer to 8.3 Links Between Components), a static

and a dynamic part. The static part is made up of data that takes the form of sets,

constants, variables or parameters and by the properties of this data. The data is a

mathematical object that is part of the B language mathematical set theory (refer to

chapter 5 Expressions), such as for example a scalar, a set, a function or a sequence. The

data is encapsulated in the abstract machine. The dynamic part is used to handle the

data. It is made up of the initialization that allows assigning an initial value to the

variables and the operations, corresponding to services offered by the machine to handle

the variables. The invariant is the property of machine variables. The invariant must be

established on machine initialization and it must be preserved when a machine operation

is called. Therefore, the invariant forms the statement of the machine security properties.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

182

Refinement

The refinement of an abstract machine is a component that preserves the same interface

and the same behavior as the abstract machine but which reformulates the machine data

and operations using more concrete data. The refinement is also used to enrich what was

specified in the abstract machine. On refinement, a machine sets and concrete data are

preserved. The refinable data is refined, meaning that they may be preserved, deleted or

changed in form. New data may also be introduced. The body of the operations must

also be refined: each refined operation must perform what is specified in the abstraction,

using refinement data and more concrete and more deterministic substitutions.

A first refinement may in turn be refined by another refinement using the principles

described above. A number of refinement levels may be used in order to reformulate the

abstract machine in successive steps.

Implementation

An implementation is a B component. It is the ultimate level of refinement of an abstract

machine. It is written using a B language sub-set called B0 language, which has the

following characteristics. The implementation data must be concrete data (scalars,

arrays) that are directly implementable in a high level programming language like Ada

or C++ (refer to section 7.24, The LOCAL_OPERATIONS Clause). The body of the

operations of an implementation must be made up of concrete substitutions, called

instructions, that are directly executable in a high level programming language.

Example

The diagram below graphically illustrates a developed module. ModuleA represents both

the name of the module and the name of the abstract machine that represents the module

specification. ModuleA_r1 and ModuleA_r2 are the names of the successive refinements of

ModuleA. ModuleA_i is the name of the implementation of ModuleA.

ModuleA

ModuleA_r1

ModuleA_r2

ModuleA_i

Base module

A base module, also called a base machine, refers to a B module that has only an

abstract machine. A base machine corresponds to a leaf in the import graph of a project.

Unlike other modules that are refined and may be translated, this one is not translated

but must have associated code that directly implements its data and its services. The

base machines may be the interface with existing code or with low level functions that

do not exist in B language, such as the system functions. The input/output functions are

a typical example of functions interfaced by base machines.

Abstract module

An abstract module has an abstract machine that is not refined and that does not have

any associated code. The only use for an abstract module in a B project is to include it

(refer to the INCLUDES link) in an abstract machine or in a refinement without ever

Architecture

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

183

importing it (refer to the IMPORTS link) into the project. It therefore forms an

intermediate step for abstract reasoning.

8.3 B Project

Presentation

A B project refers to a complete set of B module instances. The components of these

module instances are connected by links. The links must obey certain rules.

Instantiating and renaming

A module instance is the copy of an abstract machine. Instantiating enables reusing an

abstract machine a number of times in the same project. Each abstract machine instance

has its own data space that contains the values of the machine modifiable data. This data

is specific to the instance; the data comprises variables (refer to section 7.18, The

CONCRETE_VARIABLES Clause and section 7.19, The ABSTRACT_VARIABLES Clause) and

machine formal parameters (refer to section 7.5, The CONSTRAINTS Clause). The

constants of a machine are specific to the machine as their value is identical in all

machine instances. When calling up an operation from a machine instance, the values of

the machine variables and parameters handled by the operation are those of the data

space of the instance.

There is a distinction between abstract and concrete instances. The former are created

during the specification phase and form the abstract data spaces (refer to the INCLUDES

link). The latter are created during the implementation phase and form the concrete data

spaces for the program associated to the project (refer to the IMPORTS link).

Each instance has its own specific name. This name may be the machine name, without

renaming, an identifier, called the renaming prefix, followed by a dot and the machine

name. In the case of an instance without renaming, the instance and the abstract machine

have the same name, but they must not be confused. Instantiating without renaming

represents the most frequent case in a B project, as the machines that are instantiated

only once do not need to be renamed (it is therefore possible to choose to instance them

without renaming them). On the other hand, instantiating with renaming is required as

soon as a machine is instantiated a number of times, as the name of each instance of a B

project machine must be unique in order to identify the data spaces.

If a component Cmp accesses a machine instance InstMch, then the name of this instance

influences the name used in Cmp to designate the variables and operations of InstMch. If

the instance does not use renaming, then the variables and the InstMch operations will be

used in Cmp under the same name as in the abstract machine that declares it. If InstMch is

renamed, then the name of variables and of operations used in Cmp must be prefixed by

the renaming prefix of InstMch followed by a dot.

Links between components

The components of a B project may be linked together by four types of links: IMPORTS,

SEES, INCLUDES and USES. All of them link a component to a machine instance they are

declared in the visibility clauses for B components. Here is a brief description of them:

• IMPORTS link

The IMPORTS link between an implementation Mimp and a machine instance MN is

used to create the Mimp instance concretely, and to gain full access to its services.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

184

It is said that MN is the father of Mimp, as it fully controls the writing of the

modifiable data in Mimp. Import is used to structure a B project into layers, since

the implementation of a module is implemented by importing other modules that

provide lower level services.

A B project imports graph refers to the graph made up of the B project modules

and of the import links between the implementations of these modules. To

designate which machine instance is imported by a link, the link should include

the renaming prefix of the imported machine instance.

An imports graph must have only one root which has a specific role. This is the

main machine of the project. Its operations are the project entry point. From the

main machine, the imports graph is organized into layers that represent the levels

of project breakdown into elements that are simpler and simpler. A graph leaf may

be either a terminal developed module or a base machine. The import graph of a

project fully describes the organization of the project executable part as each

module in the graph has associated code, whether developed modules or base

machines.

The diagram below shows an example of a project imports graph. Each module

instance has 0 to n sons and only one father, except the main module that does not

have any father.

MchA

MchA_i

MchB

MchB_r

MchC

MchC_r1

MchD

MchD_i

MchE

MchE_i

MchF

MchF_i

MchG

MchG_i

MchH

MchH_i

MchB_i MchC_r2
MchC_i

MchH

MchH_i

BasicX BasicY BasicZ

IMPORTS

h1
h2

• SEES link

The SEES link is a transverse reference in the B project import graph that allows a

component to see a machine instance, i.e. to access in read mode but not in write

mode, the components of the instance of the seen machine.

It is said that a B module is dependent on another B module, if the implementation

of the first module sees or imports an instance from the second module. The

dependency graph of a B project is the imports graph of the project to which are

added the SEES links. The SEES links have the renaming suffix of the instance of

the seen machine. This suffix may contain several successive renaming (refer to

The SEES clause and renaming).

• INCLUDES link

The INCLUDES link between a component MN (a machine or a refinement) and an

Architecture

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

185

instance of machine Minc enables including in MN the components of Minc. The

inclusion creates the machine instance Minc at an abstract level.

• USES link

When a component includes a number of machine instances, the included

machines may share the data of one of them named Mused via a USES link to Mused.

The USES clause enables referencing a machine instance within several inclusion

links.

Rules applying to links

The rules that apply to links between components in a project are given below.

Rules for the IMPORTS links

1. A machine instance must not be imported more that once into a project. Therefore

to import a machine into a project a number of times, it is necessary to create a

number of instances by giving them different renaming prefixes.

2. Any complete project must contain one and only one developed module that is

never imported into the project. This is the only root of the project imports graph.

This module is called the main project module.

Rules for the dependency links

3. Any machine instance seen in a project must be imported into the project.

4. If a machine instance is seen by a component, then the refinements of this

component must also see this instance.

5. If a component sees a machine instance MA then it cannot see a machine instance

belonging to the import sub-graph in MA. The following diagram illustrates the

illegal architectures.

Figure 4: illegal architecture for the SEES link

6. A component must not have a several links to the same machine instance. For

example, an implementation cannot see and import the same machine instance.

7. Cycles are forbidden in the project dependency graph.

MA

MB

IMPORTS

SEES

Dependancy links
IMPORTS or SEES

 0 to N links

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

186

8. If a component A sees a machine B, we must be able to go from A to B by

following the importation tree with this rule: we must start from A, then go up at

least one step et finally go down exacty one step in order to reach B. In other

words, a component can only see its brother, uncle, great-uncle, great-great-uncle,

etc.

Rules for the USES links

9. If a machine MA uses an instance of machine Mused, then the project must include a

machine that includes an instance of MA and Mused.

8.4 Libraries

A B library is a collection of modules that may be used in a project. The notion of

individual libraries enables building whole sets of module libraries that may be reused

in other projects. It also allows breaking down a project into several sub-parts, each

individual sub-part being an individual library. The modules in a library may themselves

in turn use other libraries.

A complete B project may become a library. However, a library does not have to

correspond to a project since it may contain several main modules. The figure below

shows an example of a project that uses a library.

 MA

hA MA_i

_i

MB

MB_r

_r

MC

MC_r1
MC_r2
MC_i

_r1

MD

MD_i

ME

ME_i

MF
hF MF_i
_i

MG

MG_i

MH
H MH_i
_i

MB_i
_i

MJ
 MJ_i
_i

BasicX

BasicY
Ba

BasicY

IMPORTS

h1
h2 Library

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

187

APPENDIX

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

189

ANNEX A. RESERVED KEYWORDS AND OPERATORS

This appendix contains the description of reserved keywords and of the operators of B

language, sorted by ascending ASCII order. The ASCII order is reminded below:

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

For each reserved keyword or operator, this chapter provides:

 its ASCII notation, which can be possibly completed by its use when there is a non-

trivial correlation between the ASCII and mathematical notations (for example, in

the case of the power operator, the ASCII notation x ** y corresponds to the

mathematical notion xy)

 its mathematical notion, if it differs from its ASCII notation.

 its priority level. The priority level corresponds to the priority level during the

syntactic analysis. The higher the priority level of an operator, the more it attracts

operands. For example, if the operators op40 and op250 are respectively of 40 and 250

priority, then the expression x op40 y op250 z is analysed as x op40 (y op250 z)

 its associative properties (L for associative to the left or R for associative to the

right). If two binary operators named op have the same priority, then: x op y op z will

be analysed as (x op y) op z if op is associative to the left; and as x op (y op z) if op is

associative to the right.

 its description.

ASCII Math. Pri. As. Description References

!  250 For any 4.2

"  String or definition file 5.1, 2.3

 250 There exists 4.2

$0 Value of data before substitution 5.1

%  250 Lambda expression 5.16

&  40 G Conjunction (logical AND) 4.1

' 250 G Access to a record field 5.9

(Open bracket 4.1, 5.1

) Close bracket 4.1, 5.1

* × 190 G Multiplication or Cartesian product 3.2, 5.3, 5.7

x ** y x
y
 200 D Power of 5.3

+ 180 G Addition 5.3

+-> 2 125 G Partial function 5.15

+->> 6 125 G Partial surjection 5.15

, 115 G Comma

- 180 G Subtraction 5.3, 5.8

- 210 Unary minus 5.3

--> 3 125 G Total function 5.15

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

190

ASCII Math. Pri. As. Description References

-->> 7 125 G Surjection 5.15

-> k 130 G Insert at the start of a sequence 5.15

. 220 D Renaming or data separator used

in the operators , , , , , ,



.. 170 G Interval 5.7

/ 190 G Integer division 5.3

/:  160 G Non-belonging 4.4

/<: - 110 G Non-inclusion 4.5

/<<:  110 G Strict non-inclusion 4.5

/=  160 G Not equal 4.3

/\  160 G Intersection 5.8

/|\ q 160 G Restriction of a sequence to the
head

5.19

:  60 G Belonging 4.4

: 120 G Record field 5.9

:: : G Becomes part of (belonging) 6.12

:= G Becomes equal to 6.3

; 20 G Sequencing for substitution or
composition of relations

6.15, 5.11

< 160 G Strictly less than 4.6, 2.3

<+ + 160 G Overload a relation 5.14

<-> 1 125 G Set of relations 5.10

<- j 160 G Insert at end of sequence 5.19

<-- c G Operation output parameters 6.16, 7.23

<:  110 G Inclusion 4.5

<<:  110 G Strict inclusion 4.5

<<| a 160 G Substraction to the domain 5.14

<=  160 G Less than or equal 4.6

<=>  60 G Equivalence 4.1

<| r 160 G Restriction to the domain 5.14

= 60 G Equals 4.3

== Definition 2.3

=>  30 G Implies 4.1

> 160 G Strictly greater than 4.6, 2.3

>+> 4 125 G Partial injection 5.15

>-> 5 125 G Total injection 5.15

>->> 9 125 G Total bijection 5.15

><  160 G Direct product of relations 5.11

>=  160 G Greater than or equal 4.6

ABSTRACT_CONSTANTS ABSTRACT_CONSTANTS clause 7.15

ABSTRACT_VARIABLES ABSTRACT_VARIABLES clause 7.19

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

191

ASCII Math. Pri. As. Description References

ANY ANY substitution 6.10

ASSERT ASSERT substitution 6.5

ASSERTIONS ASSERTIONS clause 7.21

BE LET substitution 6.11

BEGIN BEGIN substitution 6.1

BOOL Conversion of a predicate into a
Boolean value

5.6

CASE CASE substitution 6.9

CHOICE CHOICE substitution 6.6

CONCRETE_CONSTANTS CONCRETE_CONSTANTS clause 7.14

CONCRETE_VARIABLES CONCRETE_VARIABLES clause 7.18

CONSTANTS CONSTANTS clause 7.14

CONSTRAINTS CONSTRAINTS clause 7.5

DEFINITIONS DEFINITIONS clause 2.3

DO WHILE substitution 6.17

EITHER CASE substitution 6.9

ELSE IF or CASE substitution 6.7, 6.9

ELSIF IF substitution 6.7

END Terminator of clauses or of
substitutions BEGIN, PRE,
ASSERT, CHOICE, IF, SELECT,
ANY, LET, VAR, CASE and WHILE

EXTENDS clause EXTENDS 7.11

FALSE Literal Boolean constant “false” 5.2

FIN F Set of finite sub-sets 5.7

FIN1 F1 Set of finite non empty sub-sets 5.7

IF Substitution IF 6.7

IMPLEMENTATION IMPLEMENTATION clause 7.4

IMPORTS IMPORTS clause 7.7

IN BE or VAR substitution 6.11, 6.17

INCLUDES INCLUDES clause 7.9

INITIALISATION INITIALISATION clause 7.22

INT Set of implementable relative
integers

5.6

INTEGER Z Set of relative integers 5.6

INTER I Quantified intersection 5.8

INVARIANT INVARIANT clause or WHILE
substitution

7.20, 6.17

LET LET substitution 6.11, 6.14

LOCAL_OPERATIONS LOCAL_OPERATIONS clause 7.24

MACHINE MACHINE clause 7.1

MAXINT Largest implementable integer 5.3

MININT Smallest implementable integer 5.3

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

192

ASCII Math. Pri. As. Description References

NAT Set of implementable natural
integers

5.6

NAT1 NAT1 Set of non-empty implementable
natural integers

5.6

NATURAL N Set of natural integers 5.6

NATURAL1 N1 Set of non-empty natural integers 5.6

OF CASE substitution 6.9

OPERATIONS OPERATIONS clause 7.23

OR CHOICE or CASE substitution 6.6, 6.9

PI  Quantified integer product 5.4

POW P Set of sub-sets 5.7

POW1 P1 Set of non-empty sub-sets 5.7

PRE Precondition substitution 6.4

PROMOTES PROMOTES clause 7.10

PROPERTIES PROPERTIES clause 7.16

REFINES REFINES clause 7.6

REFINEMENT REFINEMENT clause 7.3

SEES SEES clause 7.8

SELECT SELECT clause 6.8

SETS SETS clause 7.13

SIGMA  Quantified product 5.4

STRING Set of character strings 5.6

THEN Precondition substitution, ASSERT,
IF or CASE

7.10, 6.5, 6.7,
6.9

TRUE Literal Boolean constant “true” 5.2

UNION U Quantified union 5.8

USES USES clause 7.12

VALUES VALUES clause 7.17

VAR VAR substitution 6.14

VARIANT WHILE substitution 6.17

VARIABLES VARIABLES clause 7.19

WHEN SELECT substitution 6.8

WHERE ANY substitution 6.10

WHILE WHILE substitution 6.17

[Start of sequence 5.13, 5.17

[] Empty sequence 5.17

\/ u 160 G Union 5.8

\|/ w 160 G Restrict a sequence to the end 5.19

] End of sequence 5.13, 5.17

^) 160 G Concatenate sequences 5.19

arity Tree node arity 5.22

bin Binary tree in extension 5.20

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

193

ASCII Math. Pri. As. Description References

bool Predicate boolean cast 5.2

btree Binary trees 5.20

card Cardinal 5.4

closure(R) R
*
 Reflexive closure of a relation 5.12

closure1(R) R
+
 Closure of a relation 5.12

conc Concatenation of a succession 5.19

const Tree constructor 5.21

dom Domain of a function 5.13

father Father of a tree node 5.22

first First element in a sequence 5.18

fnc Transformed into a function 5.16

front Front of a sequence 5.18

id Function identity 5.11

infix Infix formulae of a tree 5.20

inter General intersection 5.8

iseq Set of injective sequences 5.17

iseq1 iseq1 Set of injective non-empty
sequences

5.17

iterate(R, n) R
n
 Iteration of a relation 5.12

last Last element in a sequence 5.18

left Left tree 5.20

max Maximum in a set of integers 5.4

min Minimum in a set of integers 5.4

mirror Mirror of a tree 5.21

mod 190 G Modulo 5.3

not ¬ Logical no 4.1

or  40 G Disjunction (logical OR) 4.1

perm Set of permutations (bijective
sequences)

5.17

postfix Postfix formulae of a tree 5.21

pred Predecessor of an integer 5.3

prefix Prefix formulae of a tree 5.21

prj1 prj1 First projection of a relation 5.11

prj2 prj2 Second projection of a relation 5.11

ran Range of a relation 5.13

rank Rank of a tree node 5.22

rec Record in extension 5.9

rel Set of relations 5.16

rev Reverse of a sequence 5.18

right Right tree 5.20

seq Set of sequences 5.17

seq1 Set of non-empty sequences 5.17

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

194

ASCII Math. Pri. As. Description References

size Size of a sequence 5.18

sizet Size of a tree 5.21

skip Null substitution 6.2

son i
th
 son of a tree 5.22

sons Sons of a tree node 5.21

struct Set of records 5.9

subtree Subtree of a tree 5.22

succ Successor 5.3

tail Tail of a sequence 5.18

top Top of a tree 5.21

tree Trees 5.20

union Generalized union 5.8

{ Start of set 5.7

{} Ø Empty set 5.6

| 10 G
Vertical bar used in , , , , ,

, 

|->  160 G Maplet 5.5

|> R 160 G Restriction to the range 5.14

|>> A 160 G Substraction to the range 5.14

|| 20 G Simultaneous substitutions parallel
product of relations

5.11

} End of set 5.7

r~ r
-1

 230 G Reverse relation 5.11

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

195

ANNEX B. GRAMMAR
This Appendix covers B language grammar, the grammar of typing predicates and of types. The lexical and syntax

conventions used to describe this grammar is defined in chapter 2.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

196

B.1 B Language Grammar

B.1.1 Initial Axiom

Component ::=

 Machine_abstract

 | Refinement

 | Implementation

B.1.2 Clauses

Machine_abstract ::=

 "MACHINE" Header

 Clause_machine_abstract
*

 "END"

Clause_machine_abstract ::=

 Clause_constraints

 | Clause_sees

 | Clause_includes

 | Clause_promotes

 | Clause_extends

 | Clause_uses

 | Clause_sets

 | Clause_concrete_constants

 | Clause_abstract_constants

 | Clause_properties

 | Clause_concrete_variables

 | Clause_abstract_variables

 | Clause_invariant

 | Clause_assertions

 | Clause_initialization

 | Clause_operations

Header ::=

 Ident ["(" Ident
+","

 ")"]

Refinement ::=

 "REFINEMENT" En-tête

 Clause_refines

 Clause_refinement
*

 "END"

Clause_refinement ::=

 Clause_sees

 | Clause_includes

 | Clause_promotes

 | Clause_extends

 | Clause_sets

 | Clause_concrete_constants

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

197

 | Clause_abstract_constants

 | Clause_properties

 | Clause_concrete_variables

 | Clause_abstract_variables

 | Clause_invariant

 | Clause_assertions

 | Clause_initialization

 | Clause_operations

Implementation ::=

 "IMPLEMENTATION" Header

 Clause_refines

 Clause_implementation
*

 "END"

Clause_implementation ::=
 Clause_sees
 | Clause_imports
 | Clause_promotes
 | Clause_extends_B0
 | Clause_sets
 | Clause_concrete_constants
 | Clause_properties
 | Clause_values
 | Clause_concrete_variables
 | Clause_invariant
 | Clause_assertions
 | Clause_initialization_B0
 | Clause_operations_B0

Clause_constraints ::=

 "CONSTRAINTS" Predicate
+""

Clause_refines ::=
 "REFINES" Ident

Clause_IMPORTS ::=

 IMPORTS ([Ident"."]Ident ["(" Instanciation_B0
+","

 ")"])+","

Instanciation_B0 :=
 Term
 | Number_set_B0
 | BOOL

 | Interval

Clause_sees ::=
 "SEES" (Ident

+"."
)
+","

Clause_includes ::=

 "INCLUDES" ([Ident.]Ident ["(" Instanciation
+","

 ")"])
+","

Instanciation :=
 Terme
 | Number_set
 | "BOOL"

 | Interval

Clause_promotes ::=
 "PROMOTES" (Ident

+"."
)
+","

Clause_EXTENDS ::=

 "EXTENDS" ([Ident"."]Ident ["(" Instantiating
+","

 ")"])+","

Clause_EXTENDS_B0 ::=

 "EXTENDS" ([Ident"."]Ident ["(" Instanciing_B0
+","

 ")"])+","

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

198

Clause_uses ::=
 "USES" ([Ident"."]Ident)

+","

Clause_sets ::=
 "SETS" Set

+";"

Set ::=
 Ident
 | Ident "=" "{" Ident

+","
 "}"

Clause_concrete_constants ::=

 "CONCRETE_CONSTANTS" Ident
+","

 | "CONSTANTS" Ident
+","

Clause_abstract_constants ::=
 "ABSTRACT_CONSTANTS" Ident

+","

Clause_properties ::=

 "PROPERTIES" Predicate
+""

Clause_values ::=
 "VALUES" Valuing

+";"

Valuation ::=
 Ident "=" Term
 | Ident "=" "Bool" "(" Condition ")"
 | Ident "=" Expr_array
 | Ident "=" Interval_B0

Clause_concrete_variables ::=

 "CONCRETE_VARIABLES" (Ident
+"."

)
+","

Clause_abstract_variables ::=
 "ABSTRACT_VARIABLES" Ident

+","

 | "VARIABLES" Ident
+","

Clause_invariant ::=

 "INVARIANT" Predicate
+""

Clause_assertions ::=
 "ASSERTIONS" Predicate

+";"

Clause_initialization ::=
 "INITIALISATION" Substitution

Clause_initialization_B0 ::=
 "INITIALISATION" Instruction

Clause_operations ::=
 "OPERATIONS" Operation

+";"

Operation ::=
 Header_operation "=" Level1_substitution

Header_operation ::=

 [Ident
+","

 ""] Ident
+"."

 ["(" Ident
+","

 ")"]

Clause_operations_B0 ::=
 "OPERATIONS" Operation_B0

+";"

Operation_B0 ::=
 Header_operation "=" Level1_instruction

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

199

B.1.3 Terms and Groups of Expressions

Term ::=
 Simple_term
 | Ident

+"."
 "(" Term

+","
 ")"

 | Arithmetical_expression

Simple_term ::=
 Ident

+"."

 | Integer_lit
 | Boolean_lit

Integer_lit ::=
 Integer_literal
 | "MAXINT"
 | "MININT"

Boolean_lit ::= "FALSE"
 | "TRUE"

Arithmetical_expression ::=
 Integer_lit
 | Ident

+"."

 | Arithmetical_expression "+" Arithmetical_expression
 | Arithmetical_expression "-" Arithmetical_expression
 | "-" Arithmetical_expression

 | Arithmetical_expression "" Arithmetical_expression
 | Arithmetical_expression "/" Arithmetical_expression
 | Arithmetical_expression "mod" Arithmetical_expression
 | Arithmetical_expression

Expression_arithmétique

 | "succ" "(" Arithmetical_expression ")"
 | "pred" "(" Arithmetical_expression ")"

 | "floor" "(" Expression_arithmétique ")"
 | "ceiling" "(" Expression_arithmétique ")"
 | "real" "(" Expression_arithmétique ")"

Expr_array ::=
 Ident
 | "{" (Simple_term

+"m"
 "m" Term)+","

 "}"

 | (Range
+""

 "" "{" Term "}")
+""

Range ::=
 Ident
 | Interval_B0
 | "{" Simple_term

+","
 "}"

Interval_B0 ::=
 Arithmetical_expression ".." Arithmetical_expression
 | Number_set_B0

Number_set_B0 ::=
 "NAT"

 | "NAT1"

 | "INT"

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

200

B.1.4 Conditions

Condition ::=
 Simple_term "=" Simple_term

 | Simple_term "" Simple_term
 | Simple_term "<" Simple_term
 | Simple_term ">" Simple_term

 | Simple_term "" Simple_term

 | Simple_term "" Simple_term

 | Condition "" Condition

 | Condition "" Condition
 | "¬" "(" Condition ")"

B.1.5 Instructions

Instruction ::=
 Level1_instruction
 | Sequence_instruction

Level1_instruction ::=
 Block_instruction
 | Var_instruction
 | Identity_substitution
 | Becomes_equal_instruction
 | Callup_instruction
 | If_instruction
 | Case_instruction
 | Assert_instruction
 | While_substitution

Block_instruction ::=
 "BEGIN" Instruction "END"

Var_instruction ::=
 "VAR" Ident

+","
 "IN" Instruction "END"

Becomes_equal_instruction ::=

 Ident
+"."

 ["(" Term
+","

 ")"] ":=" Term
 | Ident

+"."
 ":= " Expr_array

 | Ident
+"."

 ":=" "bool" "(" Condition ")"

Callup_instruction ::=

 [(Ident
+"."

)
+","

 ""] Ident
+"."

 ["(" (Term | String_lit)
+","

 ")"]

Sequence_instruction ::=
 Instruction ";" Instruction

If_instruction ::=
 "IF" Condition "THEN" Instruction
 ("ELSIF" Condition "THEN" Instruction)

*

 ["ELSE" Instruction]
 "END"

Case_instruction ::=
 "CASE" Simple_term "OF"
 "EITHER" Simple_term

+","
 "THEN" Instruction

 ("OR" Simple_term
+","

 "THEN" Instruction)
*

 ["ELSE" Instruction]
 "END"
 "END"

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

201

B.1.6 Predicates

Predicate ::=
 Bracketed_predicate
 | Conjunction_predicate
 | Negation_predicate
 | Disjunction_predicate
 | Implication_predicate
 | Equivalence_predicate
 | Universal_predicate
 | Existential_predicate
 | Equals_predicate
 | Unequals_predicate
 | Belongs_predicate
 | Non_belongs_predicate
 | Inclusion_predicate
 | Strict_inclusion_predicate
 | Non_inclusion_predicate
 | Non_strict_inclusion_predicate
 | Less_than_or_equal_predicate
 | Strictly_less_than_predicate
 | Greater_or_equal_predicate
 | Strictly_greater_predicate

Bracketed_predicate ::=
 "(" Predicate ")"

Conjunction_predicate ::=

 Predicate "" Predicate

Negation_predicate ::=
 "¬" "(" Predicate ")"

Disjunction_predicate ::=

 Predicate "" Predicate

Implication_predicate ::=

 Predicate "" Predicate

Equivalence_predicate ::=

 Predicate "" Predicate

Predicate_universel ::=

 "" List_ident "." "(" Predicate "" Predicate ")"

Existential_predicate ::=

 "" List_ident "." "(" Predicate ")"

Equals_predicate ::=
 Expression "=" Expression

Predicate_unequal ::=

 Expression "" Expression

Belongs_predicate ::=

 Expression "" Expression

Non_belongs_predicate ::=

 Expression "" Expression

Predicate_includes ::=

 Expression "" Expression

Predicate_includes_strictly ::=

 Expression "" Expression

Non_inclusion_predicate ::=

 Expression "" Expression

Non_inclusion_predicate_strict ::=

 Expression "" Expression

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

202

Less_than_or_equal_predicate::=

 Expression "" Expression

Strictly_less_than_predicate ::=
 Expression "<" Expression

Preedicate_greater_than_or_equal ::=

 Expression "" Expression

Strictly_greater_predicate_than ::=
 Expression ">" Expression

B.1.7 Expressions

Expression ::=
 Expressions_primary
 | Expressions_Boolean
 | Expressions_arithmetical
 | Expressions_of_couples
 | Expressions_of_sets
 | Construction_of_sets
 | Expressions_of_relations
 | Expressions_of_functionss
 | Construction_of_functionss
 | Expressions_of_sequences

Expression_primary ::=
 Data
 | Expr_bracketed

Expressions_boolean ::=
 Boolean_lit
 | Conversion_Bool

Expressions_arithmetical ::=
 Integer_lit
 | Addition
 | Difference
 | Unary_minus
 | Product
 | Division
 | Modulo
 | Power_of
 | Successor
 | Predecessor
 | Maximum
 | Minimum
 | Cardinal
 | Generalized_sum
 | Generalized_product
 | Floor
 | Ceiling
 | Real_conversion

Expressions_of_couple ::=
 Couple

Expressions_of_sets ::=
 Empty_set
 | Number_set
 | Boolean_set
 | Strings_set

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

203

Construction_of_sets ::=
 | Product
 | Comprehension_set
 | Subsets
 | Finite_subsets
 | Set_extension
 | Interval
 | Difference
 | Union
 | Intersection
 | Generalized_union
 | Generalized_intersection
 | Quantified_union
 | Quantified_intersection

Expressions_of_relations ::=
 Relations
 | Identity
 | Reverse
 | First_projection
 | Second_projection
 | Composition
 | Direct_product
 | Parallel_product
 | Iteration
 | Reflexive_closure
 | Closure
 | Domain
 | Range
 | Image
 | Restriction
 | Antirestriction
 | Corestriction
 | Anticorestriction
 | Overwrite

Expressions_of_functionss ::=
 Partial_functions
 | Total_functions
 | Partial_injections
 | Total_injections
 | Partial_surjections
 | Total_surjections
 | Total_bijections

Construction_of_functionss ::=
 Lambda_expression
 | Function_constant
 | Evaluation_functions
 | Transformed_function
 | Transformed_relation
Expressions_of_sequences ::=
 Sequences
 | Non_empty_sequences
 | Injective_sequences
 | Non_empty_inj_sequences
 | Permutations

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

204

Construction_of_sequences ::=
 | Empty_sequence
 | Sequence_extension
 | Sequence_size
 | Sequence_first_element
 | Sequence_last_element
 | Head_sequence
 | Queue_sequence
 | Reverse_sequence
 | Concatenation
 | Insert_start
 | Insert_tail
 | Restrict_head
 | Restrict_tail
 | Generalized_concat

Data ::= Ident+"."

 | Ident+"."$0

Expr_bracketed ::= "(" Expression ")"

Boolean_lit ::= FALSE

 | TRUE

Conversion_Bool ::= bool "(" Predicate ")"

Integer_lit ::= Integer_literal

 | MAXINT

 | MININT

Addition ::= Expression + Expression

Difference ::= Expression - Expression

Unary_minus ::= - Expression

Product ::= Expression * Expression

Division ::= Expression / Expression

Modulo ::= Expression mod Expression

Power_of ::= Expression Expression

Successor ::= succ ["(" Expression ")"]

Predecessor ::= pred ["(" Expression ")"]

Maximum ::= max "(" Expression ")"

Minimum ::= min "(" Expression ")"

Cardinal ::= card "(" Expression ")"

Floor ::= floor "(" Expression ")"

Ceiling ::= ceiling "(" Expression ")"

Real_conversion ::= real "(" Expression ")"

Generalized_sum ::=  List_ident. "(" Predicate+ | Expression ")"

Generalized_product ::=  List_ident . "(" Predicate+ | Expression ")"

Couple ::= Expression m Expression

 | Expression , Expression

Empty_set ::= Ø

Number_set ::= Z

 | N

 | N1

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

205

 | NAT

 | NAT1

 | INT

Boolean_set ::= BOOL

Strings_set ::= STRING

Product ::= Expression × Expression

Comprehension_set ::= { Ident+"," | Predicate+ }

Subsets ::= P "(" Expression ")"

 | P1 "(" Expression ")"

Finite_subsets ::= F "(" Expression ")"

 | F1 "(" Expression ")"

Set_extension ::= { Expression+"," }

Interval ::= Expression .. Expression

Difference ::= Expression - Expression

Union ::= Expression  Expression

Intersection ::= Expression  Expression

Generalized_union ::= union "(" Expression ")"

Generalized_intersection ::= inter "(" Expression ")"

Quantified_union ::= U List_ident. "(" Predicate+ | Expression ")"

Quantified_intersection ::= I List_ident. "(" Predicate+ | Expression ")"

Relations ::= Expression  Expression

Identity ::= id "(" Expression ")"

Reverse ::= Expression-1

First_projection ::= prj1 "("Expression , Expression")"

Second_projection ::= prj2 "("Expression , Expression")"

Composition ::= Expression ; Expression

Direct_product ::= Expression  Expression

Parallel_product ::= Expression || Expression

Iteration ::= ExpressionExpression

Reflexive_closure ::= Expression*

Closure ::= Expression+

Domain ::= dom "(" Expression ")"

Range ::= ran "(" Expression ")"

Image ::= Expression [Expression]

Domain_restriction ::= Expression r Expression

Domain_subtraction ::= Expression a Expression

Range_restriction ::= Expression R Expression

Range_subtraction ::= Expression A Expression

Overwrite ::= Expression + Expression

Partial_functions ::= Expression 2 Expression

Total_functions ::= Expression 3 Expression

Partial_injections ::= Expression 4 Expression

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

206

Total_injections ::= Expression 5 Expression

Partial_surjections ::= Expression 6 Expression

Total_surjections ::= Expression 7 Expression

Total_bijections ::= Expression 9 Expression

Lambda_expression ::=  List_ident . "(" Predicate | Expression ")"

Evaluation_functions ::= Expression "(" Expression ")"

Transformed_function ::= fnc "(" Expression ")"

Transformed_relation ::= rel "(" Expression ")"

Sequences ::= seq "(" Expression ")"

Non_empty_sequences ::= seq1 "(" Expression ")"

Injective_sequences ::= iseq "(" Expression ")"

Non_empty_inj_sequences ::= iseq1 "(" Expression ")"

Permutations ::= perm "(" Expression ")"

Empty_sequence ::= []

Sequence_extension ::= [Expression+","]

Sequence_size ::= size "(" Expression ")"

Sequence_first_element ::= first "(" Expression ")"

Sequence_last_element ::= last "(" Expression ")"

Sequence_front ::= front "(" Expression ")"

Sequence_tail ::= tail "(" Expression ")"

Reverse_sequence ::= rev "(" Expression ")"

Concatenation ::= Expression) Expression

Insert_front ::= Expression k Expression

Insert_tail ::= Expression j Expression

Restrict_front ::= Expression q Expression

Restrict_tail ::= Expression w Expression

Generalized_concat ::= conc "(" Expression ")"

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

207

B.1.8 Substitutions

Substitution ::=
 Level1_substitution
 | Sequence_substitution
 | Simultaneous_substitution

Level1_substitution ::=
 Block_substitution
 | Identity_substitution
 | Becomes_equal_substitution
 | Precondition_substitution
 | Assertion_substitution
 | Choice_limited_substitution
 | If_substitution
 | Select_substitution
 | Case_substitution
 | Any_substitution
 | Let_substitution
 | Becomes_elt_substitution
 | Becomes_such_that_substitution
 | Var_substitution
 | Call_up_substitution
 | While_substitution

Block_substitution ::=
 "BEGIN" Substitution "END"

Identity_substitution ::=
 "skip"

Substitution_become_equal ::=
 (Ident

+"."
)

+","
 ":=" Expression

+","

 | Ident
+"."

 "(" Expression
+","

 ")" ":=" Expression

Precondition_substitution ::=

 "PRE" Predicate "THEN" Substitution "END"

Assertion_substitution ::=

 "ASSERT" Predicate "THEN" Substitution "END"

Substitution_limited_choice ::=

 "CHOICE" Substitution ("OR" Substitution)* "END"

If_substitution ::=
 "IF" Predicate "THEN" Substitution
 ["ELSIF" Predicate "THEN" Substitution]*
 ["ELSE" Substitution]
 "END"

Select_substitution ::=
 "SELECT" Predicate "THEN" Substitution
 ("WHEN" Predicate "THEN" Substitution)

*

 ["ELSE" Substitution]
 "END"

Substitute_case ::=
 "CASE" Expression "OF"
 "EITHER" Simple_term

+","
 "THEN" Substitution

 ("OR" Simple_term
+","

 "THEN" Substitution)
+

 ["ELSE" Substitution]
 "END"
 "END"

Any_substitution ::=

 "ANY" Ident
+","

 "WHERE" Predicate "THEN" Substitution "END"

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

208

Let_substitution ::=
 "LET" Ident

+","
 "BE"

 (Ident "=" Expression)
+""

 "IN" Substitution "END"

Becomes_elt_substitution ::=

 (Ident
+"."

)
+","

 ":" Expression

Becomes_such_that_substitution ::=

 (Ident
+"."

)
+","

 ":" "(" Predicate ")"

Var_substitution ::=

 "VAR" Ident
+","

 "IN" Substitution "END"

Sequence_substitution ::=

 Substitution ";" Substitution

Substitution_callup ::=

 [(Ident
+"."

)
+","

 ""] Ident
+"."

 ["(" Expression
+","

 ")"]
While_substitution ::=
 "WHILE" Condition "DO" Instruction
 "INVARIANT" Predicate
 "VARIANT" Expression
 "END"

Simultaneous_substitution ::=

 Substitution "||" Substitution

B.1.9 Useful Syntax Rule

List_ident ::=
 Ident

| (Ident+",")

B.1.10 Grammar of Typing Predicates

Typing_abstract_data ::=

 Ident
+","

 "" Expression
+"×"

 | Ident "" Expression

 | Ident "" Expression
 | Ident "=" Expression

Typing_concrete_cts ::=

 Ident
+","

 "" Typing_belonging_concrete_cts
+"×"

 | Ident "=" Typing_equals_concrete_cts

 | Ident "" Simple_set

 | Ident "" Simple_set

Typing_belonging_concrete_data ::=
 Simple_set
 | (Simple_set)

+"×"
 "3" Simple_set

 | (Simple_set)
+"×"

 "5" Simple_set
 | (Simple_set)

+"×"
 "7" Simple_set

 | (Simple_set)
+"×"

 "9" Simple_set
 | "{" Simple_term

+","
 "}"

Predicate_typing_equals_concrete_cts ::=
 | Term
 | Expr_array
 | Interval
 | Number_set_B0

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

209

Simple_set ::=
 Number_set_B0
 | "BOOL"
 | Interval
 | Ident

Number_set_B0 ::=
 "NAT"
 | "NAT1"
 | "INT"

Expr_array ::=
 Ident
 | "{" (Simple_term

+"m"
 "m" Term)+","

 "}"

 | (Range
+"×"

 "×" "{" Term "}")
+""

Range ::= Ident
 | Interval
 | "{" Simple_term

+","
 "}"

Interval ::=
 Expression ".." Expression

Typing_concrete_var ::=

 Ident
+"," "" Typing_belonging_concrete_var

+"×"

 | Ident "=" Term

Typing_belonging_concrete_data ::=
 Simple_set
 | (Simple_set)

+"×"
 " " Simple_set

 | (Simple_set)
+"×"

 " " Simple_set

 | (Simple_set)
+"×"

 "" Simple_set
 | (Simple_set)

+"×"
 " " Simple_set

 | "{" Simple_term
+","

 "}"

Typing_param_input ::=

 Ident
+","

 "" Typing_belonging_input_param
+"×"

 | Ident "=" Term

Typing_belonging_input_param ::=
 Simple_set
 | (Simple_set)

 +"×"
 "3" Simple_set

 | (Simple_set)
 +"×"

 "5" Simple_set
 | (Simple_set)

 +"×"
 "7" Simple_set

 | (Simple_set)
+"×"

 "9" Simple_set
 | "{" Simple_term

+","
 "}"

 | Set_string

Set_string ::=
 "STRING"

Typing_param_mch ::=

 | Ident
+","

 "" Typing_belonging_param_mch
+"×"

 | Ident

+","
 "=" Term

+","

Typing_belonging_param_mch ::=
 Number_set
 | "BOOL"
 | Interval
 | Ident

Number_set ::=
 "Z"
 | "N"
 | "N1"
 | "NAT"
 | "NAT1"
 | "INT"

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

210

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

211

B.2 Grammar of B Types
Type ::= Basic_type

 | "P" "(" Type ")"

 | Type "×" Type

 | "struct" "(" (Ident ":" Type)
+","

 ")"
 | "(" Type ")"

Basic_type ::=
 "Z"
 | "BOOL"
 | "STRING"
 | Ident

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

213

ANNEX C. VISIBILITY TABLES
Visibility rules between a component C1 and a component C2 define for each constituent of

C2 the access modes applied in the clauses of C1. As far as the data is concerned, a distinction

is made between read-only access and read-write access. For operations, we distinguish access

to consultation operations (operations whose specification does not modify the machine

variables) and the modification operations.

In the visibility tables below, MA refers to an abstract machine, Mn-1 refers to a refinement,

Mn refers to a refinement or an implantation, and MB refers to an abstract machine linked to a

component by one of the visibility clauses: IMPORTS, SEES, INCLUDES, or USES.

The table below indicates the different modes of visibility of the constituents of the clauses.

Visibility mode Description

 constituent is not visible

read visible constituent

read - write visible constituent,

if the constituent is a variable used in a substitution, it can be

modified,

if the constituent is an operation called in a substitution, the

operation can modify the variables of its abstract machine

read - non-write visible constituent,

if the constituent is a variable used in a substitution, it can not be

modified,

if the constituent is an operation called in a substitution, this

operation does not modify the variables of its abstract machine

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

214

C.1 Abstract machine MA / Itself
 Clauses of MA

Constituents of MA

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

read read read read

Sets, enumerated set elements,
concrete constants

 read read read read

Abstract constants

 read read read read

Concrete variables

 read read – write

Non homonymous abstract
variables

 read read – write

Developed operations (non
promoted)

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

215

C.2 Abstract Machine or Refinement MA / SEES MB Clause
 Clauses of MA

Constituents of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

Sets, enumerated set elements,
concrete constants

read

read

read

read

Abstract constants

 read read read read

Concrete variables

 read – non write

Abstract variables

 read – non write

Operations

 read – non write

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

216

C.3 Abstract Machine or Refinement MA / INCLUDES Abstract Machine or

Refinement MB Clause

 Clauses of MA

Constituents of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

Sets, enumerated set element,
concrete constants

 read read read

Abstract constants

 read read read

Concrete variables

 read read – non write

Abstract variables

 read read – non write

Operations

 read write

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

217

C.4 Abstract Machine MA / USES MB Clause
 Clauses of MA

Constituents of MB

CONSTRAINTS Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

 read read

Sets, enumerated set elements,
concrete constants

 read read read

Abstract constants

 read read read

Concrete variables

 read read – non write

Abstract variables

 read read – non write

Operations

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

218

C.5 Refinement MN / Itself
 Clauses of MN

Constituents of MN

Parameters of
INCLUDES /
EXTENDS

PROPERTIES INVARIANT /
ASSERTION

INITIALISATION /
OPERATIONS

Formal parameters

read read read

Sets, enumerated set element,
concrete constants

read read read read

Abstract constants

read read read read

Concrete variables

 read read - write

Abstract variables

 read read - write

Developed
operations

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

219

C.6 Refinement MN / Abstraction MN-1
 Clauses of MN Parameters of PROPERTIES INVARIANT / INITIALISATION / OPERATIONS

Constituents of MN-1

INCLUDES
/EXTENDS

 ASSERTION Substitutions Predicates
of ASSERT

Abstract constants
that disappear in Mn

 read read read

Abstract variables
that disappear in Mn

 read read

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

220

C.7 Implementation MN / Itself
 Clauses of MN Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS LOCAL_

OPERATIONS

Constituents of MN

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants
and invariants

ASSERT
predicates

Formal parameters

read read read read read

Enumerated sets,
elements of

enumerated sets

read read read read read read read

Deferred sets,
concrete constants

read read read
write

read read read read

Concrete variables

 read read - write read read-write

Developed operations

Local
operations

 read-write in
OPERATIONS

but not in
INITIALISATION

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

221

C.8 Implementation MN / Abstraction MN-1
 Clauses of MN Parameters of PROPERTIES INVARIANT / INITIALISATION / OPERATIONS LOCAL_

OPERATIONS

Constituents of MN-1

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants
and invariants

ASSERT
predicates

Substitutions ASSERT
Predicates

Abstract constants

 Read read read read

Abstract variables

 read read read

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

222

C.9 Implementation MN / SEES MB Clause
 Clauses of MN Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS LOCAL_

OPERATIONS

Constituents of MB

IMPORTS /
EXTENDS

 ASSERTION Instructions loops variants
and invariants

ASSERT
predicates

Formal parameters

Sets, enumerated set
elements,

concrete constants

read

read

read

Read

read

read

read

Abstract constants

 read Read read read

Concrete variables

 read – non write read read-non
write

Abstract variables

 read read-non
write

Operations

 read – non write read-non
write

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

223

C.10 Implementation MN / IMPORTS MB Clause
 Clauses of MN Parameters of PROPERTIES VALUES INVARIANT / INITIALISATION / OPERATIONS LOCAL_

OPERATIONS

Constituents of MB

IMPORTS
/EXTENDS

 ASSERTION Instructions loops variants
and invariants

ASSERT
predicates

Formal parameters

Sets, enumerated set
elements,

concrete constants

 read read read read read read

Abstract constants

 read read read read

Concrete variables

 read read – non write read read-write

Abstract variables

 read read read- write

Operations

 read – write read-write

ANNEX D. GLOSSARY

Abstract constant Constant value data belonging to a component of any type and

which may be refined during component refinement.

Abstract machine The specification of a B module. An abstract machine has

clauses that are used to declare the abstract machine links, its

static part (sets, parameters, constants, variables and their

properties) and its dynamic part (initialization of variables and

operations on data).

Abstract machine instance

An instance created during the specifications phase by an

inclusion. It forms an abstract data space.

Abstract module Designates a B module with only one abstract machine that is

not refined and that does not have any associated code.

Abstract variable Data of any type belonging to a component and which may be

refined during the component refining process.

Abstraction Concept symmetrical to refinement. If component Mn is a

refinement of component Mn-1, then Mn-1 is an abstraction of Mn.

Array A total function of a set, or a Cartesian product of sets (if the

array is multi-dimensional), towards a set.

Base machine Designates the abstract machine of a base module.

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

224

Base module Designates a B module with only one abstract machine that is

not refined and which has manually associated code, that

directly implements the machine data and services.

B0 The part of B language used to describe implementation

operations and data. B0 language is a computer programming

language.

Clause Components are made up of clauses. Each clause is used to

declare a specific part of the component.

Component Indifferently refers to a machine, a refinement or an

implementation.

Concrete constant Constant value data that belongs to a component that represents

a scalar, array, non empty finite integer interval integer. A

concrete constant is automatically preserved during refinement.

Concrete machine instance

An instance created during the implementation phase by

importing. It forms a concrete data space in the computer

program assigned to the project.

Concrete variable Implementable data belonging to a component and preserved

during refinement, representing either a scalar or an array.

Condition An implementable predicate used in the B0 IF and WHILE

instructions.

Constant Designate either a concrete constant or an abstract constant.

Constituent A constituent refers to everything that can be named in a

component. It may be a set, a constant, a variable, a quantified

variable, a local variable, a machine parameter, a predicate or an

operation.

Consultation access operation An operation on a component that does not

modify the component variables.

Data A mathematical object that has a name and a value. The type of

any B data item must correspond to the types defined in the

mathematical library.

Demonstration Refer to Proof

Developed module A developed module is a module entirely developed in B

language. It comprises an abstract machine, any refinements and

its implementation.

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

225

Gluing invariant A specific invariant from the INVARIANT clause, of a component,

that expresses a refinement relation between the abstraction

variables and the variable of its abstraction.

Implementation The last refinement of a developed module. The implementation

language is B0 language.

Imported machine instance

A machine instance found in the IMPORTS or EXTENDS clause.

Included machine instance

A machine instance found in the INCLUDES or EXTENDS clause.

Initialization The initialization of a component instance is described in the

INITIALISATION clause. It especially allows assigning a value to

variables of the component instance.

Instruction A substitution that is part of B0 language.

Invariant A predicate that expresses invariant properties about the data of

a component. There are two kinds of invariants in B language:

the invariant from the INVARIANT clause, about the component

data that can be modified and the invariant of the WHILE loop

clause, about the data modified in the loop.

Lexem A character string that belongs to a lexical unit of a language.

The result of the lexical analysis phase of a text is a sequence of

lexems.

Local operation An operation local to an implementation: it is specified in the

LOCAL_OPERATIONS clause and implemented in the OPERATIONS

clause and usable only from inside the implementation.

Machine Refer to Abstract machine

Machine instance A copy that uses an abstract machine as its model. An abstract

machine instance has a data space that contains the values of

data that may be modified in the machine (variables and

parameters).

Main machine A specific machine in a project that serves as input point for

running the code of a B project.

Module A B module enables modeling a sub-system; it forms a part of a

B project. The specification of a B module is formalized in B

language in an abstract machine. There are three sorts of

modules, modules developed by successive refinements of an

abstract machine, abstract modules and base modules. Due to

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

226

incorrect language usage, there is often confusion between the

module and its specification, the abstract machine.

Operation A service provided by a B module. The operations are the

dynamic part of a module.

Proof obligation A mathematical lemma made up of a list of predicates called

assumptions and a predicate called the goal and which must be

proved under these assumptions.

Promoted operation Operation on a component whose parameters and specifications

are identical to an operation on an included or imported machine

instance.

Parameter Three constituents of B language use parameters: abstract

machines, definitions and operations. Formal parameters are

names given during the declaration of a constituent with

parameters. When using a constituent, its parameters are

assigned values called the effective parameters.

Proof A mathematical activity that consists in demonstrating Proof

Obligations. Project development mainly comprises two major

activities: writing components and demonstrating the proof

obligations related to these components.

Project Designates a complete and self-sufficient set of modules used to

formally specifies a system and possibly to generate a computer

program that conforms to the formal specifications.

Refinement The refinement Mn of a component Mn-1 is a new formulation of

Mn, in which certain components of Mn are refined (the abstract

constants and the abstract variables, the initialization and the

operations).

Refining Refining a component with certain properties is equivalent to

providing a new formulation for this component using one or

more new components that must not contradict the properties of

the refined component, and reduce the level of component

abstraction and indeterminism. Refining also allows enriching a

component by adding new specification details not included in

the abstraction.

Renaming The renaming function in B is used to create abstract machine

instances. A machine instance is designated by the name of the

machine preceded by a renaming prefix. The renaming prefix

comprises an identifier followed by a dot. The variables and the

operations from a renamed machine instance are designated

from the outside using the same renaming prefix.

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

227

Required machine A machine that is seen, included, used, imported or refined.

Seen machine instance A machine instance found in the SEES clause.

Signature of an operation

An ordered list of input and output parameter types for an

operation.

Substitution A mathematical notation used to model the transformation of

predicates.

Typing A mechanism that verifies statically the type of data.

Used machine instance

A machine instance found in the USES clause of a machine.

Valuation A mechanism that assigns values to concrete constants and to

deferred sets declared in a B module, within the module

implementation. The valuing is described in the VALUES clause.

Variable Designates either a concrete variable or an abstract variable.

Visibility clause A set of clauses used to link a component with machine

instances. The visibility clauses number five: IMPORTS, SEES,

INCLUDES, USES and EXTENDS.

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

229

-, 40, 50

!, 31

&, 30

(, 30

), 30

=>, 30

<=>, 30

#, 31

=, 32

/=, 32

/:, 33

<:, 34

<<:, 34

/<:, 34

/<<:, 34

<=, 35

<, 35

>=, 35

>, 35

+, 40

*, 40

/, 40

**, 40

|->, 45

{}, 46

*, 48

{, 48

}, 48

.., 48

\/, 50

/\, 50

’, 53

<->, 55

-1, 56

;, 56

><, 56

||, 56

[, 60

], 60

<|, 61

<<|, 61

|>, 61

|>>, 61

<+, 61

+->, 63

-->, 63

>+>, 63

>->, 63

+->>, 63

-->>, 63

>->>, 63

%, 65

[], 67

[, 67

], 67

^, 71

->, 71

<-, 71

/|\, 71

\|/, 71

<--, 169

$

$, 38

$0, 38

.

., 38

|

||, 109

A

abstract machine, 181, 215

ABSTRACT_CONSTANTS, 140

ABSTRACT_VARIABLES, 152

abstraction, 215

addition, 40

analysis

lexical, 3

semantic, 3

syntactic, 3

anticollision, 3

ANY, 97

architecture, 181

arity, 78

array, 215

array, 17

concrete, 17

ASSERT, 91

ASSERTIONS, 158

B

B0, 215

BEGIN, 86

belonging, 33

bijection

total, 63

bin, 80

Bool, 39, 144, 197

BOOL, 46

Boolean, 16, 17

bracket, 38

brackets, 30

btree, 73

C

card, 43

cardinal, 43

Cartesian product, 48

CASE, 96

character strings, 6

CHOICE, 92

clause, 215

visibility, 219

closure

transitive, 59

transitive and reflexive, 59

comments, 6

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

230

component, 111, 215

composition, 56

conc, 71

CONCRETE_CONSTANTS, 138

CONCRETE_VARIABLES, 150

condition, 216

conjunction, 30

const, 75

constant, 142, 216

abstract, 140, 215

concrete, 20, 138, 144, 215

gluing, 143

typing, 142

CONSTANTS, 138, 197

constituent, 216

CONSTRAINTS, 118

couple, 45

D

data, 38, 216

definition, 8

définition

call, 10

DEFINITIONS, 8

demonstration, 216

determinism, 84

development, 181

difference, 50

Difference, 40

disjunction, 30

DO, 107

dom, 60

domain, 60

E

EITHER, 96

ELSE, 93, 95, 96

ELSIF, 93

END, 86, 90, 91, 92, 93, 95, 96, 102, 107, 111, 114, 116,

196

equal to, 32

equivalence, 30

expression, 37

Expression

Arithmetical, 40, 43

Boolean, 39

Cartesian, 45

Sets, 46

extends, 133

EXTENDS, 133

F

FALSE, 39

father, 78

FIN, 48

FIN1, 48

first, 69

fnc, 65

front, 69

function

evaluation, 65

partial, 63

total, 63

transformed into, 65

G

greater than or equal to, 35

grouping, 128

H

homonym

concrete constant, 138

invariant, 154

homonymy, 128

abstract constant, 140

abstract variable, 152

concrete constant, 150, 152

initialization, 159

properties of constants, 142

valuation of constants, 144

I

id, 56

identifier anti-collision, 177

identifiers, 5

identity, 56

IF, 93

image, 60

implementation, 182, 216

IMPLEMENTATION, 116

implication, 30

import, 120

IMPORTS, 183

IN, 102

INCLUDES, 127, 184

inclusion

strict, 34

inclusion, 34

indeterminism, 167

infix, 80

INITIALISATION, 159

initialization, 216

injection

partial, 63

total, 63

instance, 183

machine, 217

machine imported, 216

machine included, 216

machine seen, 218

machine used, 218

instruction, 217

INT, 46

integer

concrete, 16

INTEGER, 46

integer division, 40

inter, 50

INTER, 50

intersection, 50

generalized, 50

quantified, 50

interval, 48

invariant, 154, 217

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

231

gluing, 216

INVARIANT, 107, 154

iseq, 67

iseq1, 67

iteration, 59

K

keywords, 5

L

lambda-expression, 65

last, 69

left, 80

less than or equal, 35

lexem, 3, 217

library, 186

link, 183

rules, 185

literal

listed, 136

literal integers, 6

LOCAL_OPERATIONS, 169

M

machine, 181, 217

base, 215

base, 182

base, 215

main, 217

required, 218

MACHINE, 111

maplet, 45

max, 43

maximum, 43

MAXINT, 40

min, 43

minimum, 43

MININT, 40

mirror, 75

mod, 40

module

developed, 182

module, 181

module

base, 182

module

base, 182

module

abstract, 182

module

abstract, 215

module

developed, 216

module, 217

modulo, 40

N

NAT, 46

NAT1_, 46

NATURAL, 46

NATURAL1, 46

negation, 30

non belonging, 33

non inclusion

strict, 34

non inclusion, 34

not, 30

O

OF, 96

operation, 163, 217

body, 165, 167

consultation, 216

header, 164

local, 217

promoted, 217

refining, 166

operation, 169

OPERATIONS, 163

or, 30

OR, 92, 96

ordered pair, 14, 45

overwrite, 61

P

parameter, 217

of machine, 26

of operations, 164

operation input, 25, 164

operation output, 165

parameters

machine, 118

perm, 67

permutations, 67

PI, 43

postfix, 75

POW, 48

POW1, 48

power of, 40

power-set, 48

PRE, 90

precondition, 167

pred, 40

predecessor, 40

predicate

typing, 15

predicate, 29

prefix, 75

prj1, 56

prj2, 56

product, 40

direct, 56

of expressions, 43

parallel, 56

project, 183, 218

projection

first, 56

second, 56

promote, 131

PROMOTES, 131

promotion, 129

proof, 218

proof obligation, 217

PROPERTIES, 142

 B Language Reference Manual - Version 1.8.10

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

232

propositions, 30

Q

quantifier

existential, 31

universal, 31

R

ran, 60

range, 60

rank, 78

rec, 53

record

field access, 53

in extension, 53

set, 53

record, 18

refinement, 182, 218

REFINEMENT, 114

REFINES, 119

refining, 218

rel, 65

relation

transformed into, 65

renaming

SEES, 123

renaming, 38

renaming, 183

renaming, 218

restriction

domain, 61

range, 61

sémantic, 3

rev, 69

reverse, 56

right, 80

S

scope, 3

sees, 123

SEES, 184

SELECT, 95

seq, 67

seq1, 67

sequence

empty, 67

first element, 69

front, 69

general concatenation, 71

in extension, 67

insert at tail, 71

insert in front, 71

last element, 69

restrict at tail, 71

restrict in front, 71

reverse, 69

size, 69

tail, 69

sequences, 67

bijective, 68

injective, 67

injective non empty, 67

non empty, 67

set

abstract, 136, 144

empty, 46

in comprehension, 48

in extension, 48

listed, 136

of Boolean values, 46

of character strings, 46

of integers, 46

of non null integers, 46

of relative integers, 46

of subsets, 14

power-set, 14

set

abstract, 16

set

enumerated, 16

Set

Relations, 55

SETS, 136

SIGMA, 43

size, 69

sizet, 75

skip, 87

son, 78

sons, 75

spacing characters, 6

strictly greater than, 35

strictly less than, 35

STRING, 46

struct, 53

sub-set

non empty, 48

sub-sets, 48

finite, 48

non empty finite, 48

substitution, 83, 218

assertion, 91

becomes element of, 99

becomes equal, 89

becomes such that, 100

bounded choice, 92

concrete, 167

generalized, 84

identity, 87

operation call, 105

precondition, 90

sequencing, 103

simultaneous, 109

VAR, 102

while, 107

subtraction

domain, 61

range, 61

subtree, 78

succ, 40

successor, 40

sum

of expressions, 43

surjection

partial, 63

total, 63

syntax, 7

Symbols

All reproduction, even partial, any transfer to a third party in any form whatsoever, is strictly forbidden without the authorization of ClearSy

233

T

tail, 69

THEN, 90, 91, 93, 95, 96, 206

top, 75

tree

arity, 78

binary in extension, 80

infixed flattening, 80

left subtree, 80

rank, 78

right subtree, 80

subtree, 78

tree set, 73

tree, 73

tree

binary tree set, 73

tree

construction, 75

tree

root, 75

tree

sons, 75

tree

prefixed flattening, 75

tree

postfixed flattening, 75

tree

size, 75

tree

symmetry, 75

tree

father, 78

tree

sons, 78

TRUE, 39

type

basic, 14

typing, 3, 12

U

unary minus, 40

unequal to, 32

union, 50

generalized, 50

quantified, 50

UNION, 50

USES, 134, 185

using, 134

V

valuation, 144, 154, 219

VALUES, 144

VAR, 102

variable, 219

abstract, 152, 215

concrete, 150, 216

initialize, 159

linkage, 155

typing, 154

VARIABLES, 152, 197

VARIANT, 107

visibility, 3

W

WHEN, 95

WHERE, 97

WHILE, 107

	RELEASE NOTES
	1. Introduction
	2. Basic Concepts
	2.1 Lexical Conventions
	2.2 Syntactic conventions
	2.3 The DEFINITIONS Clause
	2.4 Useful Syntax Rules

	3. TYPING
	3.1 Typing foundations
	3.2 B Types
	3.3 Typing abstract data
	3.4 Types and constraints of concrete data
	3.5 Typing of Concrete Constants
	3.6 Typing of Concrete Variables
	3.7 Typing operation input parameters
	3.8 Typing machine parameters
	3.9 Typing local variables and operation output parameters

	4. PREDICATES
	4.1 Propositions
	4.2 Quantified Predicates
	4.3 Equality Predicates
	4.4 Belonging Predicates
	4.5 Inclusion Predicates
	4.6 Numbers Comparison Predicates

	5. Expressions
	5.1 Primary Expressions
	5.2 Boolean Expressions
	5.3 Arithmetical Expressions
	5.4 Arithmetical Expressions (continued)
	5.5 Expressions of Couples
	5.6 Building Sets
	5.7 Set List Expressions
	5.8 Set List Expressions (continued)
	5.9 Record expressions
	5.10 Sets of Relations
	5.11 Expressions of Relations
	5.12 Expressions of Relations (continued)
	5.13 Expressions of Relations (continued)
	5.14 Expressions of Relations (continued)
	5.15 Sets of Functions
	5.16 Expressions of Functions
	5.17 Sets of Sequences
	5.18 Sequence Expressions
	5.19 Sequence Expressions (continued)
	5.20 Tree sets
	5.21 Tree Expressions
	5.22 Tree nodes expressions
	Definitions
	5.23 Binary Tree expressions

	6. Substitutions
	6.1 Block substitution
	6.2 Identical substitution
	6.3 Becomes Equal Substitution
	6.4 Precondition Substitution
	6.5 Assertion Substitution
	6.6 Bounded choice Substitution
	6.7 IF conditional substitution
	6.8 Conditional Bounded choice Substitution
	6.9 Case Conditional Substitution
	6.10 Unbounded choice Substitution
	6.11 Local Definition Substitution
	6.12 Becomes Element of Substitution
	6.13 Becomes such that Substitution
	6.14 Local Variable Substitution
	6.15 Sequencing Substitution
	6.16 Operation Call Substitution
	6.17 While Loop Substitution
	6.18 Simultaneous Substitution

	7. Components
	7.1 Abstract Machine
	7.2 Header
	7.3 Refinement
	7.4 Implementation
	7.5 The CONSTRAINTS Clause
	7.6 The REFINES Clause
	7.7 The IMPORTS Clause
	7.8 The SEES Clause
	7.9 The INCLUDES Clause
	7.10 The PROMOTES Clause
	7.11 The EXTENDS Clause
	7.12 The USES Clause
	7.13 The SETS Clause
	7.14 The CONCRETE_CONSTANTS Clause
	7.15 The ABSTRACT_CONSTANTS Clause
	7.16 The PROPERTIES Clause
	7.17 The VALUES Clause
	7.18 The CONCRETE_VARIABLES Clause
	7.19 The ABSTRACT_VARIABLES Clause
	7.20 The INVARIANT Clause
	7.21 The ASSERTIONS Clause
	7.22 The INITIALISATION Clause
	7.23 The OPERATIONS Clause
	7.24 The LOCAL_OPERATIONS Clause
	7.25 Specificities of the B0 language
	7.25.1 Array controls in B0
	7.25.2 TERMS
	7.25.3 CONDITIONS
	7.25.4 Instructions

	7.26 Identifier Anti-Collision Rules

	8. B Architecture
	8.1 Introduction
	8.2 B Module
	8.3 B Project
	8.4 Libraries

	Annex A. RESERVED KEYWORDS AND OPERATORS
	Annex B. Grammar
	B.1 B Language Grammar
	B.1.1 Initial Axiom
	B.1.2 Clauses
	B.1.3 Terms and Groups of Expressions
	B.1.4 Conditions
	B.1.5 Instructions
	B.1.6 Predicates
	B.1.7 Expressions
	B.1.8 Substitutions
	B.1.9 Useful Syntax Rule
	B.1.10 Grammar of Typing Predicates

	B.2 Grammar of B Types

	Annex C. Visibility Tables
	C.1 Abstract machine MA / Itself
	C.2 Abstract Machine or Refinement MA / SEES MB Clause
	C.3 Abstract Machine or Refinement MA / INCLUDES Abstract Machine or Refinement MB Clause
	C.4 Abstract Machine MA / USES MB Clause
	C.5 Refinement MN / Itself
	C.6 Refinement MN / Abstraction MN-1
	C.7 Implementation MN / Itself
	C.8 Implementation MN / Abstraction MN-1
	C.9 Implementation MN / SEES MB Clause
	C.10 Implementation MN / IMPORTS MB Clause

	Annex D. Glossary

